A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | -$\frac{3}{5}$ |
分析 根據(jù)B的坐標(biāo)可知圓O是單位圓,可得COB是正三角形,利用三角函數(shù)的定義即可求解
解答 解:由B的坐標(biāo)($\frac{4}{5}$)2+($-\frac{3}{5}$)2=1可知圓O是單位圓,∴△COB是正三角形,
∴$∠BOC=\frac{π}{3}$,$∠AOB=\frac{π}{3}-α$,
由直角三角形中的三角函數(shù)的定義可得sin($\frac{π}{3}-α$)=$\frac{3}{5}$,
∴$\sqrt{3}$cos2$\frac{α}{2}$-sin$\frac{α}{2}$cos$\frac{α}{2}$-$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$cosα$-\frac{1}{2}$sinα=sin($\frac{π}{3}-α$)=$\frac{3}{5}$
故選B
點(diǎn)評 本題主要考查了單位圓的計算和三角函數(shù)的定義的靈活運(yùn)用能力.屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+$\sqrt{2}+\sqrt{6}$ | B. | 4+2$\sqrt{2}$+2$\sqrt{6}$ | C. | 2+2$\sqrt{2}$+2$\sqrt{3}$ | D. | 4+4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x+2013 | B. | f(x)=-x+2013 | C. | f(x)=-x-2013 | D. | f(x)=x-2013 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{5}$ | D. | $\frac{9}{20}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({1,\frac{{\sqrt{5}}}{2}})$ | B. | $({\frac{{\sqrt{5}}}{2},+∞})$ | C. | $({1,\frac{5}{4}})$ | D. | $({\frac{5}{4},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+i | B. | 1-i | C. | $\frac{1}{2}+\frac{1}{2}i$ | D. | $\frac{1}{2}-\frac{1}{2}i$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com