【題目】已知點G是△ABC的重心,且AG⊥BG, + = ,則實數(shù)λ的值為(
A.
B.
C.3
D.2

【答案】B
【解析】解:如圖,連接CG,延長交AB于D,
由于G為重心,故D為中點,
∵AG⊥BG,∴DG= AB,
由重心的性質得,CD=3DG,即CD= AB,
由余弦定理得,AC2=AD2+CD2﹣2ADCDcos∠ADC,
BC2=BD2+CD2﹣2BDCDcos∠BDC,
∵∠ADC+∠BDC=π,AD=BD,
∴AC2+BC2=2AD2+2CD2 ,
∴AC2+BC2= AB2+ AB2=5AB2
又∵ + = ,
,即λ= ,
∴λ= =
= = = =

故選B.

【考點精析】關于本題考查的同角三角函數(shù)基本關系的運用和正弦定理的定義,需要了解同角三角函數(shù)的基本關系:;;(3) 倒數(shù)關系:;正弦定理:才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學參加數(shù)學文化知識競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次測試成績中隨機抽取8次,記錄如下:

(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);

(Ⅱ)現(xiàn)要從中選派一人參加正式比賽,從所抽取的兩組數(shù)據(jù)求出甲、乙兩位同學的平均值和方差,據(jù)此你認為選派哪位同學參加比賽較為合適?

(Ⅲ)若對加同學的正式比賽成績進行預測,求比賽成績高于80分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,Sn為數(shù)列{an}的前n項和,a1=b1=1,且b3S3=36,b2S2=8(n∈N*).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若an<an+1 , 求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一(1)班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖:

求分數(shù)在的頻率及全班人數(shù);

求分數(shù)在之間的頻數(shù),并計算頻率分布直方圖中間矩形的高;

若要從分數(shù)在之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,至少有一份分數(shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心為C的圓:(x﹣a)2+(y﹣b)2=8(a,b為正整數(shù))過點A(0,1),且與直線y﹣3﹣2 =0相切.
(1)求圓C的方程;
(2)若過點M(4,﹣1)的直線l與圓C相交于E,F(xiàn)兩點,且 =0.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對函數(shù) ,有下列說法:
①f(x)的周期為4π,值域為[﹣3,1];
②f(x)的圖象關于直線 對稱;
③f(x)的圖象關于點 對稱;
④f(x)在 上單調遞增;
⑤將f(x)的圖象向左平移 個單位,即得到函數(shù) 的圖象.
其中正確的是 . (填上所有正確說法的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知矩形和菱形所在平面互相垂直,如圖,其中, , ,點為線段的中點.

(Ⅰ)試問在線段上是否存在點,使得直線平面?若存在,請證明平面,并求出的值,若不存在,請說明理由;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在海島上有一座海拔的山峰,山頂設有一個觀察站,有一艘輪船按一固定方向做勻速直線航行,上午時,測得此船在島北偏東、俯角為處,到時,又測得該船在島北偏西、俯角為的處.

1)求船的航行速度;

2)求船從行駛過程中與觀察站的最短距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)對于任意實數(shù)x,不等式sin x+cos x>m恒成立,求實數(shù)m的取值范圍;

(2)存在實數(shù)x,不等式sin x+cos x>m有解,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案