4.設(shè)函數(shù)f(x,y)=x2y3,則fy′(x,y)=3x2y2;fyx″(x,y)=6xy2

分析 根據(jù)多元函數(shù)求導(dǎo)法則,分清楚求解那個(gè)變量的導(dǎo)數(shù),另一個(gè)變量為常數(shù)即可.

解答 解:∵函數(shù)f(x,y)=x2y3,
根據(jù)多元函數(shù)求導(dǎo)法則:
fy′(x,y)=3x2y2
fyx″(x,y)=6xy2,
故答案為:3x2y2;6xy2

點(diǎn)評(píng) 本題考查了多元函數(shù)求解問(wèn)題,關(guān)鍵分清楚求解那個(gè)變量的導(dǎo)數(shù),根據(jù)運(yùn)算法則求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1+(\frac{1}{2})^{x},x<0}\\{\sqrt{x}+1,x≥0}\end{array}\right.$,則“x2-x-2>0”是“f(x)>3”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.當(dāng)x>3時(shí),不等式x+$\frac{1}{x-1}$≥a恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,3]B.[3,+∞)C.[$\frac{7}{2}$,+∞)D.(-∞,$\frac{7}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合M={x|-1<x<1},N={x|x2<2,x∈Z},則( 。
A.M⊆NB.N⊆MC.M∩N={0}D.M∪N=N

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.請(qǐng)寫出下面數(shù)列的一個(gè)通項(xiàng)公式
(1)10,100,1000,10000,…
(2)10,200,3000,40000,…
(3)0.9,0.99,0.999,0.9999,…

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函教f(x)=log2(x2-ax+6)在(-∞,2]是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,4]B.[4,+∞)C.[4,5)D.[4,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=x2+mx+n,對(duì)任意的t,都有f(1+t)=f(1-t),那么f(1),f(-2),f(4)的大小關(guān)系為:f(4)=f(-2)>f(1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知450°<α<510°,則$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$的值是( 。
A.-sin$\frac{α}{2}$B.cos$\frac{α}{2}$C.sin$\frac{α}{2}$D.-cos$\frac{α}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=$\frac{x}{2x-1}$+f′(1),則f′(1)=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案