2.已知命題p:實(shí)數(shù)的平方是非負(fù)數(shù),則下列結(jié)論正確的是( 。
A.命題¬p是真命題
B.命題p是特稱命題
C.命題p是全稱命題
D.命題p既不是全稱命題也不是特稱命題

分析 根據(jù)命題的否定以及特稱命題、全稱命題的定義判斷即可.

解答 解:命題p:實(shí)數(shù)的平方是非負(fù)數(shù),是真命題,
故¬p是假命題,命題p是全稱命題,
故選:C.

點(diǎn)評(píng) 本題考查了命題的否定以及特稱命題、全稱命題的定義,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x2-2x+a-1|-a2-2a.
(1)當(dāng)a=3時(shí),求f(x)≥-10的解集;
(2)若f(x)≥0對(duì)x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知等比數(shù)列{an},且a6+a8=$\int_0^4{\sqrt{16-{x^2}}dx}$,則a8(a4+2a6+a8)的值為( 。
A.π2B.2C.2D.16π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知{an}是等比數(shù)列,an>0,a3=12,且a2,a4,a2+36成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè){bn}是等差數(shù)列,且b3=a3,b9=a5,求b3+b5+b7+…+b2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在直三棱柱ABC-A1B1C1中,底面△ABC是等腰直角三角形,且斜邊AB=$\sqrt{2}$,側(cè)棱AA1=2,點(diǎn)D為AB的中點(diǎn),點(diǎn)E在線段AA1上,AE=λAA1(λ為實(shí)數(shù)).
(1)求證:不論λ取何值時(shí),恒有CD⊥B1E;
(2)當(dāng)λ=$\frac{1}{3}$時(shí),求多面體C1B-ECD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知點(diǎn)P是直線x-y-2=0上的動(dòng)點(diǎn),過(guò)點(diǎn)P作拋物線C:x2=2py(0<p<4)的兩條切線,切點(diǎn)分別為A、B,線段AB的中點(diǎn)為M,連接PM,交拋物線C于點(diǎn)N,若$\overrightarrow{PM}$=λ$\overrightarrow{PN}$,則λ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)$a=\int_0^π{({sinx+cosx})dx}$,且${({{x^2}-\frac{1}{ax}})^n}$的展開(kāi)式中只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,那么展開(kāi)式中的所有項(xiàng)的系數(shù)之和是( 。
A.1B.$\frac{1}{256}$C.64D.$\frac{1}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=sin({2x+\frac{π}{6}})+2{cos^2}x$.
(1)作出函數(shù)y=f(x)在一個(gè)周期內(nèi)的圖象,并寫出其單調(diào)遞減區(qū)間;
(2)當(dāng)$x∈[{0,\frac{π}{2}}]$時(shí),求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知直線l過(guò)橢圓C:$\frac{x^2}{2}+{y^2}=1$的左焦點(diǎn)F且交橢圓C于A、B兩點(diǎn).O為坐標(biāo)原點(diǎn),若OA⊥OB,則點(diǎn)O到直線AB的距離為( 。
A.$\frac{{\sqrt{6}}}{3}$B.2C.$\frac{{\sqrt{5}}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案