13.已知n∈N*,在坐標(biāo)平面中有斜率為n的直線(xiàn)ln與圓x2+y2=n2相切,且ln交y軸的正半軸于點(diǎn)Pn,交x軸于點(diǎn)Qn,則$\lim_{x→∞}\frac{{|{{P_n}{Q_n}}|}}{{2{n^2}}}$的值為$\frac{1}{2}$.

分析 設(shè)切線(xiàn)ln的方程為:y=nx+m,由于直線(xiàn)ln與圓x2+y2=n2相切,可得$\frac{|m|}{\sqrt{1+{n}^{2}}}$=n,取m=n$\sqrt{1+{n}^{2}}$.可得切線(xiàn)ln的方程為:y=nx+n$\sqrt{1+{n}^{2}}$,可得Pn,Qn,可得|PnQn|.再利用數(shù)列極限的運(yùn)算法則即可得出.

解答 解:設(shè)切線(xiàn)ln的方程為:y=nx+m,
∵直線(xiàn)ln與圓x2+y2=n2相切,
∴$\frac{|m|}{\sqrt{1+{n}^{2}}}$=n,取m=n$\sqrt{1+{n}^{2}}$.
∴切線(xiàn)ln的方程為:y=nx+n$\sqrt{1+{n}^{2}}$,
∴Pn$(0,n\sqrt{1+{n}^{2}})$,Qn$(-\sqrt{1+{n}^{2}},0)$.
∴|PnQn|=$\sqrt{1+{n}^{2}+{n}^{2}(1+{n}^{2})}$=1+n2
∴$\lim_{x→∞}\frac{{|{{P_n}{Q_n}}|}}{{2{n^2}}}$=$\underset{lim}{n→∞}\frac{1+{n}^{2}}{2{n}^{2}}$=$\underset{lim}{n→∞}\frac{\frac{1}{{n}^{2}}+1}{2}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了直線(xiàn)的方程、直線(xiàn)與圓的相切性質(zhì)、點(diǎn)到直線(xiàn)的距離公式、兩點(diǎn)之間的距離公式,數(shù)列極限的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知空間中一點(diǎn)O,過(guò)點(diǎn)O的三條射線(xiàn)不共面,互不相同的點(diǎn)A1,A2,…,An,…和B1,B2,…,Bn,…以及C1,C2,…,Cn,…分別在這三條射線(xiàn)上,并滿(mǎn)足所有平面AiBiCi(i=1,2,…,n,…)均相互平行,且所有幾何體AnBnCn-An+1Bn+1Cn+1(n∈N*)的體積均相等,設(shè)OAn=an,若a1=1,a2=2,則數(shù)列{an3}的前n項(xiàng)和Sn=$\frac{7}{2}{n}^{2}-\frac{5}{2}n$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=2cos(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為2π.
(1)求ω的值;
(2)記△ABC內(nèi)角A、B、C的對(duì)邊分別為a,b,c,若f(A-$\frac{π}{3}$)=1,且a=$\frac{\sqrt{3}}{2}$b,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(3,m).若向量$\overrightarrow$在$\overrightarrow{a}$方向上的投影為3,則實(shí)數(shù)m=( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.0D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若函數(shù)$f(x)={x^2}+{x^{\frac{2}{3}}}$-4的零點(diǎn)m∈(a,a+1),a為整數(shù),則所以滿(mǎn)足條件a的值為a=1或a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.我們知道,以正三角形的三邊中點(diǎn)為頂點(diǎn)的三角形與原三角形的面積之比為1:4,類(lèi)比該命題得,以正四面體的四個(gè)面的中心為頂點(diǎn)的四面體與原四面體的體積之比為$\frac{1}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,若AC=5,∠A=120°,三角形的面積$\frac{15\sqrt{3}}{4}$,則BC的長(zhǎng)度為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=asinωxcosωx+$\sqrt{3}$cos2ωx(a>0,ω>0)的最小正周期為$\frac{π}{2}$,最小值為-$\frac{\sqrt{3}}{2}$,將函數(shù)f(x)的圖象向左平移φ(φ>0)個(gè)單位后,得到的函數(shù)圖象的一條對(duì)稱(chēng)軸為x=$\frac{π}{8}$,則φ的值不可能為( 。
A.$\frac{5π}{24}$B.$\frac{13π}{24}$C.$\frac{17π}{24}$D.$\frac{23π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若logxy=-1,則$x+\frac{y}{2}$的最小值為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案