下列判斷正確的是( 。
A、若a∥α,b∥β,α∥β,則a∥b
B、a⊥α,b⊥β,α⊥β,則a⊥b
C、若a?α,b?β,a∥b,則α∥β
D、若m⊥α,m⊥n,則n∥α
考點:空間中直線與平面之間的位置關(guān)系
專題:綜合題,空間位置關(guān)系與距離
分析:A,C,D列舉所有可能情況,B根據(jù)線面、面面垂直的性質(zhì),可得結(jié)論.
解答: 解:對于A,a∥α,b∥β,α∥β,則a、b平行、相交或異面,故不正確;
對于B,由a⊥α,b⊥β,α⊥β,根據(jù)線面、面面垂直的性質(zhì),可知a⊥b,故正確;
對于C,若a?α,b?β,a∥b,則α∥β或α、β相交(此時a,b與交線平行),故不正確;
對于D,若m⊥α,m⊥n,則n∥α或n?α,故不正確.
故選:B.
點評:本題考查空間直線的位置關(guān)系中平行的判定,直線與平面平行、垂直的性質(zhì)定理等,要注意判定定理與性質(zhì)定理的綜合應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知算法如圖:
(1)指出其功能
(2)畫出流程圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
e1
,
e2
是兩個單位向量,若向量
a
=
e1
-2
e2
,
b
=3
e1
+4
e2
,且
a
b
=-6,則向量
e1
e2
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,2,3,4,5},集合A={1,3,4},集合B={2,4},則(∁UA)∪B為(  )
A、{2,4,5}
B、{1,3,4}
C、{1,2,4}
D、{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4張卡片上分別寫有數(shù)字1,2,3,4,從這4張卡片中隨機抽取2張,則取出的2張卡片上的數(shù)學(xué)之和為偶數(shù)的概率是( 。
A、
1
2
B、
1
3
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l∥平面α,直線m?平面α,則l與m的位置關(guān)系為( 。
A、平行B、相交
C、異面D、平行或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為(x-1)2+y2=1,P是橢圓
x2
4
+
y2
3
=1上一點,過P作圓的兩條切線,切點為A、B,求
PA
PB
的范圍為( 。
A、[0,
56
9
]
B、[2
2
-3,+∞]
C、[2
2
-3,
56
9
]
D、[
3
2
56
9
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線2ax-by+2=0(a>0,b>0)被圓x2+y2+2x-4y+1=0截得的弦長為4,則
1
a
+
9
b
的最小值為(  )
A、
1
4
B、6
C、12
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3ax+b,(a,b∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)曲線y=f(x)在x=0處的切線方程為3ax+y-2a=0,且y=f(x)與x軸有且只有一個公共點,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案