通過(guò)隨機(jī)詢問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),其中60名男大學(xué)生中有40人愛(ài)好此項(xiàng)運(yùn)動(dòng),女大學(xué)生中有20人愛(ài)好此項(xiàng)運(yùn)動(dòng),能不能有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”?
參考數(shù)據(jù) 當(dāng)Χ2≤2.706時(shí),無(wú)充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無(wú)關(guān)聯(lián);
當(dāng)Χ2>2.706時(shí),有90%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)Χ2>3.841時(shí),有95%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)Χ2>6.635時(shí),有99%的把握判定變量A,B有關(guān)聯(lián).
Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
考點(diǎn):獨(dú)立性檢驗(yàn)
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:由題意得到列2×2列聯(lián)表,代入公式計(jì)算k的值,和臨界值表比對(duì)后即可得到答案.
解答: 解:列聯(lián)表:
總計(jì)
愛(ài)好 40 20 60
不愛(ài)好 20 30 50
總計(jì) 60 50 110
K2=
110×(40×30×-20×20)2
60×50×60×50
≈7.8

有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”.
點(diǎn)評(píng):本題是一個(gè)獨(dú)立性檢驗(yàn),我們可以利用臨界值的大小來(lái)決定是否拒絕原來(lái)的統(tǒng)計(jì)假設(shè),若值較大就拒絕假設(shè),即拒絕兩個(gè)事件無(wú)關(guān).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)長(zhǎng)方體去掉一個(gè)小長(zhǎng)方體后,所得幾何體的正視圖和側(cè)視圖如圖,
(1)畫(huà)出俯視圖;
(2)求表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)滿足f(-2)=f(4)=-16,且f(x)最大值為2.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)在[t,t+1](t>0)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的公比為正數(shù),且a1=2,a3=a2+4.
(1)求{an}的通項(xiàng)公式;
(2)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an•bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

波波斯基以游戲方式?jīng)Q定是否參加學(xué)校同人社還是學(xué)校芭蕾舞團(tuán),游戲規(guī)則為:以O(shè)為起點(diǎn)(如圖正方體ABCD-EFGH的中心為點(diǎn)O),再?gòu)腁,B,C,D,E,F(xiàn),G,H這8個(gè)頂點(diǎn)中任取兩點(diǎn)為終點(diǎn)分別得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為X,若X>0就參加芭蕾舞團(tuán),否則就參加同人社.
(Ⅰ)求波波參加學(xué)校芭蕾舞社的概率;
(Ⅱ)若分別在左面四個(gè)頂點(diǎn)A,D,H,E處放置藍(lán)球,右面四個(gè)頂點(diǎn)B,C,G,F(xiàn)處放置紅球,波波斯基在上底面隨機(jī)抽取2個(gè)球,在下底面隨機(jī)抽取3個(gè)球,記抽得的紅球個(gè)數(shù)為ξ,寫(xiě)出隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1-2cosx
(x∈(0,2π)有意義,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2-2x-1=0關(guān)于直線2x-y+3=0對(duì)稱的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足a1=1,an+1=(-1)n(an+1),{an}的前n項(xiàng)和為Sn,則S2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0),過(guò)其焦點(diǎn)且斜率為1的直線交拋物線于A,B兩點(diǎn),若線段AB的中點(diǎn)的縱坐標(biāo)為2,則該拋物線的標(biāo)準(zhǔn)方程為( �。�
A、y2=-4x
B、y2=4x
C、x2=4y
D、x2=-4y

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷