【題目】下列說法正確的是( )
A.若:,,則:,.
B.命題“已知,若,則或”是真命題.
C.“在上恒成立”“在上恒成立”.
D.函數(shù)的最小值為2.
【答案】B
【解析】
對于選項(xiàng)A, :,.所以該選項(xiàng)不正確;
對于選項(xiàng)B,由于逆否命題是真命題,所以原命題是真命題,所以該選項(xiàng)正確;
對于選項(xiàng)C,因?yàn)椴坏仁絻蛇叺淖宰兞慷际恰?/span>”,它只表示兩邊函數(shù)取相同的自變量時(shí),左邊的函數(shù)值不小于右邊的函數(shù)值,所以該命題不正確;
對于選項(xiàng),函數(shù)的最小值為,所以該選項(xiàng)錯(cuò)誤.
對于選項(xiàng)A,若:,,則:,.所以該選項(xiàng)不正確;
對于選項(xiàng)B,命題“已知,若,則或”的逆否命題為“若且,則”,由于逆否命題是真命題,所以原命題是真命題,所以該選項(xiàng)正確;.
對于選項(xiàng)C,“在上恒成立”不等價(jià)于“在上恒成立”,因?yàn)椴坏仁絻蛇叺淖宰兞慷际恰?/span>”,它只表示兩邊函數(shù)取相同的自變量時(shí),左邊的函數(shù)值不小于右邊的函數(shù)值,所以不等價(jià)于“在上恒成立”.所以該命題不正確;
對于選項(xiàng),函數(shù)的最小值不是2. 設(shè),
所以因?yàn)?/span>,所以函數(shù)在單調(diào)遞增,所以函數(shù)的最小值為,所以該選項(xiàng)錯(cuò)誤.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:
支持 | 不支持 | 合計(jì) | |
男性市民 | |||
女性市民 | |||
合計(jì) |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(i)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);
(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機(jī)抽取人,求至多有位老師的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在斜三棱柱中,是邊長為2的正三角形,側(cè)面為菱形,且,,點(diǎn)O為AC中點(diǎn).
(1)求證:平面ABC;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線極坐標(biāo)方程為,直線與曲線交于、兩點(diǎn).
(1)求直線的普通方程以及曲線的直角坐標(biāo)方程;
(2)若直線上有定點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在點(diǎn)處的切線方程為,求(1)實(shí)數(shù)的值;(2)函數(shù)的單調(diào)區(qū)間以及在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點(diǎn).
(1)求證:直線MN⊥平面ACB1;
(2)求點(diǎn)C1到平面B1MC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,菱形的邊長為2,對角線,現(xiàn)將沿著對角線翻折至點(diǎn).
(1)求證:;
(2)若,且點(diǎn)E為線段的中點(diǎn),求與平面夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓形紙片的圓心為,半徑為,該紙片上的等邊三角形的中心為.,,為圓上的點(diǎn),分別是以為底邊的等腰三角形.沿虛線剪開后,分別以為折痕折起,使得,,重合,得到三棱錐.當(dāng)所得三棱錐體積(單位:)最大時(shí),的邊長為_________().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】白塔中學(xué)為了解校園愛國衛(wèi)生系列活動(dòng)的成效,對全校學(xué)生進(jìn)行了一次衛(wèi)生意識測試,根據(jù)測試成績評定“合格”“不合格”兩個(gè)等級,同時(shí)對相應(yīng)等級進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對應(yīng)的頻率分布直方圖如下:
等級 | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | 24 |
(1)求統(tǒng)計(jì)表、直方圖中的a,b,c的值;
(2)用分層抽樣的方法,從等級為“合格”和“不合格”的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com