若不等式2x>x2+a對于一切x∈[-2,3]恒成立,則實數(shù)a的取值范圍( 。
A、(-∞,-8)
B、(-∞,-3)
C、(-∞,1)
D、(-8,-∞)
考點:函數(shù)恒成立問題
專題:計算題,函數(shù)的性質及應用
分析:分離參數(shù)a,依題意知,a<2x-x2對于一切x∈[-2,3]恒成立,令f(x)=2x-x2=-(x-1)2+1,則a<f(x)min,利用二次函數(shù)的單調性即可求得f(x)min,從而可得答案.
解答: 解:∵2x>x2+a對于一切x∈[-2,3]恒成立,
∴a<2x-x2對于一切x∈[-2,3]恒成立,
令f(x)=2x-x2=-(x-1)2+1,
則a<f(x)min
∵f(x)在[-2,1]上單調遞增,在[1,3]上為減函數(shù),且f(-2)=-8,f(3)=-3,
∴f(x)min=-8,
∴a<-8.
故實數(shù)a的取值范圍為(-∞,-8).
故選:A.
點評:本題考查函數(shù)恒成立問題,考查等價轉化思想與運算求解能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為梯形,AB∥DC,∠ABC=90°且PA=AB=BC,DC=2AB點E是棱PB上的動點.
(Ⅰ)當PD∥平面EAC時,確定點E在棱PB上的位置;
(Ⅱ)在(Ⅰ)的條件下,求二面角E-AC-B的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線(c-d)(x-b)-(a-b)(y-d)=0與曲線(x-a)(x-b)-(y-c)(y-d)=0的交點個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一次學習方法交流會上,需要交流示范學校的5篇論文和非示范學校的3篇論文,交流順序可以是任意的,則最先和最后交流的論文不能來自同類學校的概率是(  )
A、
15
28
B、
13
28
C、
15
56
D、
13
56

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中:(1)若向量
a
b
,則存在實數(shù)λ,使得
a
b
;
(2)非零向量
a
,
b
,
c
,
d
,若滿足
d
=(
a
c
)
b
-(
a
b
)
c
,則
a
d

(3)與向量
a
=(1,2)
,
b
=(2,1)
夾角相等的單位向量
c
=(
2
2
2
2
)

(4)已知△ABC,若對任意t∈R,|
BA
-t
BC
|≥|
AC
|
,則△ABC一定為銳角三角形.
其中正確說法的序號是(  )
A、(1)(2)
B、(1)(3)
C、(2)(4)
D、(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

運行如圖所示的程序框圖,則輸出S的值為(  )
A、8B、4C、3D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的值域
(1)y=
1-3x
;
(2)y=
x2-2x+3
;
(3)y=
1
x2+2x+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四棱錐P-ABCD中,側面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,若 E為PC的中點,且BE與平面PDC所成的角的正弦值為
2
5
5
,
(1)求CD的長
(2)求證BC⊥平面PBD
(3)設Q為側棱PC上一點,
PQ
PC
,試確定λ的值,使得二面角Q-BD-P的大小為45°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD與BDEF均為菱形,設AC與BD相交于點O,若∠DAB=∠DBF=60°,且FA=FC.
(1)求證:FC∥平面EAD;
(2)求二面角A-FC-B的余弦值.

查看答案和解析>>

同步練習冊答案