已知向量
a
=(2cos(-θ),2sin(-θ)),
b
=(cos(90°-θ),sin(90°-θ))
(1)求證:
a
b
;
(2)若存在不等于0的實數(shù)k和t,使
x
=
a
+(t2-3)
b
,
y
=-k
a
+t
b
滿足
x
y
.試求此時
k+t2
t
的最小值.
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:(1)利用誘導公式和數(shù)量積運算,只要證明
a
b
=0即可;
(2)由
x
y
,可得
x
y
=0,解得k與t的關系,代入
k+t2
t
,再利用二次函數(shù)的單調性即可得出.
解答: 解:(1)∵
a
b
=2cos(-θ)cos(90°-θ)+2sin(-θ)sin(90°-θ)=2cosθsinθ-2sinθcosθ=0,
a
b

(2)
a
2
=4cos2θ+4sin2θ=4,
b
2
=sin2θ+cos2θ
=1,
x
y
,
x
y
=[
a
+(t2-3)
b
]•(-k
a
+t
b
)=-k
a
2
+t(t2-3)
b
2
+[t-k(t2-3)]
a
b

=-4k+t(t2-3)=0,(k≠0,t≠0).
k
t
=
t2-3
4
,
k+t2
t
=
t2-3
4
+t
=
1
4
(t-2)2-
7
4
≥-
7
4
點評:本題考查了誘導公式和數(shù)量積運算、向量垂直與數(shù)量積的關系、二次函數(shù)的單調性,考查了推理能力和計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F是拋物線y2=4x的焦點,A,B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到y(tǒng)軸的距離為( 。
A、
3
2
B、1
C、
1
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-ax.
(1)求曲線f(x)在點(l,f(1))處的切線方程;
(2)求函數(shù)f(x)的最大值;
(3)若對任意x∈(0,+∞),總存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為(0,+∞),當x>1時,f(x)>0,且對于任意的x,y∈(0,+∞),恒有f(xy)=f(x)+f(y)成立.
(Ⅰ)求f(1);
(Ⅱ)證明:函數(shù)f(x)在(0,+∞)上單調遞增;
(Ⅲ)當f(2)=1時,
①解不等式f(x)+f(x-3)≤2;
②求函數(shù)f(x)在[
2
,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知3sinx+4cosx=5,求tanx的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求與曲線y=
3x2
在點P(8,4)處的切線垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的周期為π,其最高點的坐標為(
π
6
,1)
(1)求φ和ω的值
(2)求f(x)的單調增區(qū)間
(3)當x∈[0,
π
2
]時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|x2-3x-4≥0},B={x|2a≤x≤a+2}.
(Ⅰ)若A∩B≠∅,求實數(shù)a的取值范圍;
(Ⅱ)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,
(1)求異面直線BC與C1D1所成的角;
(2)若E為AA1的中點,求證:AC1∥平面B1D1E.

查看答案和解析>>

同步練習冊答案