【題目】對(duì)于函數(shù),若,則稱的“不動(dòng)點(diǎn)”,若,則稱的“穩(wěn)定點(diǎn)”,函數(shù)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為,即,,那么,

(1)求函數(shù)的“穩(wěn)定點(diǎn)”;

(2)求證:;

(3)若,且,求實(shí)數(shù)的取值范圍.

【答案】(1)“穩(wěn)定點(diǎn)”為;(2)見(jiàn)解析;(3)

【解析】

本題拿出一個(gè)概念來(lái)作為新型定義題,只需要去對(duì)定義的理解就好,要求函數(shù)的“穩(wěn)定點(diǎn)”只需求方程的值,即為“穩(wěn)定點(diǎn)”

,有這是不動(dòng)點(diǎn)的定義,此時(shí)得出,,如果,則直接滿足.

先求出存在“不動(dòng)點(diǎn)”的條件,同理取得到存在“穩(wěn)定點(diǎn)”的條件,而兩集合相等,即條件所求出的結(jié)果一直,對(duì)結(jié)果進(jìn)行分類討論.

(1)由,得:,所以函數(shù)的“穩(wěn)定點(diǎn)”為;

(2)證明:若,則,顯然成立;

,設(shè),有,則有,

所以,故

(3)因?yàn)?/span>,所以方程有實(shí)根,即有實(shí)根,

所以,解得又由得:由(1)知,故方程左邊含有因式

所以,又

所以方程要么無(wú)實(shí)根,要么根是方程的解,

當(dāng)方程無(wú)實(shí)根時(shí),,即,

當(dāng)方程有實(shí)根時(shí),則方程的根是方程的解,

則有,代入方程,故,

代入方程,得,所以.

綜上:的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某二手交易市場(chǎng)對(duì)某型號(hào)的二手汽車的使用年數(shù))與銷售價(jià)格(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

銷售價(jià)格

16

13

9.5

7

4.5

(I)試求關(guān)于的回歸直線方程.

(參考公式:,

(II)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為萬(wàn)元,根據(jù)(I)中所求的回歸方程,預(yù)測(cè)為何值時(shí),銷售一輛該型號(hào)汽車所獲得的利潤(rùn)最大?(利潤(rùn)=銷售價(jià)格-收購(gòu)價(jià)格)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:

API

[0,100]

(100,200]

(200,300]

>300

空氣質(zhì)量

優(yōu)良

輕污染

中度污染

重度污染

天數(shù)

17

45

18

20

記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失S(單位:元),空氣質(zhì)量指數(shù)API.當(dāng)時(shí),企業(yè)沒(méi)有造成經(jīng)濟(jì)損失;當(dāng)對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)時(shí)造成的經(jīng)濟(jì)損失為,當(dāng)時(shí),造成的經(jīng)濟(jì)損失;當(dāng)時(shí)造成的經(jīng)濟(jì)損失為2000元;

(1)試寫出的表達(dá)式;

(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有12天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有99%的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

100

P(k2≥k0)

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四棱柱ABCD﹣A1B1C1D1(底面是正方形,側(cè)棱垂直于底面)的8個(gè)頂點(diǎn)都在球O的表面上,AB=1,AA1′=2,則球O的半徑R=;若E,F(xiàn)是棱AA1和DD1的中點(diǎn),則直線EF被球O截得的線段長(zhǎng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某跳水運(yùn)動(dòng)員在一次跳水訓(xùn)練時(shí)的跳水曲線為如圖所示拋物線的一段.已知跳水板長(zhǎng)為,跳水板距水面的高.為安全和空中姿態(tài)優(yōu)美,訓(xùn)練時(shí)跳水曲線應(yīng)在離起跳點(diǎn)處水平距時(shí)達(dá)到距水面最大高度,規(guī)定:以為橫軸,為縱軸建立直角坐標(biāo)系.

(1)當(dāng)時(shí),求跳水曲線所在的拋物線方程;

(2)若跳水運(yùn)動(dòng)員在區(qū)域內(nèi)入水時(shí)才能達(dá)到比較好的訓(xùn)練效果,求此時(shí)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形所在平面與半圓弧所在平面垂直,上異于,的點(diǎn)

(1)證明:平面平面;

(2)在線段上是否存在點(diǎn),使得平面?說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別是棱A1B1 , B1C1的中點(diǎn),O是AC與BD的交點(diǎn),面OEF與面BCC1B1相交于m,面OD1E與面BCC1B1相交于n,則直線m,n的夾角為( )
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)已知函數(shù).

(1)若曲線處的切線與直線垂直,求的值;

(2)討論函數(shù)的單調(diào)性;若存在極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式的解集為

(1)求a,b的值.

(2)當(dāng)時(shí),解關(guān)于x的不等式

查看答案和解析>>

同步練習(xí)冊(cè)答案