【題目】設(shè)函數(shù),m∈R.
(Ⅰ)當(dāng)m=e(e為自然對數(shù)的底數(shù))時,求f(x)的極小值;
(Ⅱ)討論函數(shù)零點的個數(shù).
【答案】(1)當(dāng)x=e時,f(x)取得極小值2(2)見解析
【解析】試題分析:(1)求函數(shù)的導(dǎo)數(shù) ,函數(shù)的極值點為 ,所以得到函數(shù)的單調(diào)區(qū)間,也就得到函數(shù)的最小值了;(2)根據(jù) ,參變分離后得到 ,設(shè) ,通過導(dǎo)數(shù)求函數(shù)的單調(diào)性,以及圖象特征,轉(zhuǎn)化為 與函數(shù)的交點個數(shù)問題.
試題解析:(1)當(dāng)時, ,∴
當(dāng)時, , 在上是減函數(shù);
當(dāng)時, , 在上是增函;
∴當(dāng)時, 取最小值.
(2)∵函數(shù),
令,得;
設(shè),則
當(dāng)時, , 在上是增函數(shù);
當(dāng)時, , 在上是減函數(shù);
當(dāng)是的極值點,且是唯一極大值點,∴是的最大值點;
∴的最大值為,又結(jié)合的圖像,
可知:
①當(dāng)時,函數(shù)無零點;
②當(dāng)時,函數(shù)有且只有一個零點;
③當(dāng)時,函數(shù)有兩個零點;
④當(dāng)時,函數(shù)有且只有一個零點;
綜上:
當(dāng)時,函數(shù)無零點;當(dāng)或時,函數(shù)有且只有一個零點;當(dāng)時,函數(shù)有且只有兩個零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.
(Ⅰ)求分?jǐn)?shù)在[50,60)的頻率及全班人數(shù);
(Ⅱ)求分?jǐn)?shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間矩形的高;
(Ⅲ)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在[90,100)之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=
(1)求△ACD的面積;
(2)若BC=2 ,求AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一大學(xué)生自主創(chuàng)業(yè),擬生產(chǎn)并銷售某電子產(chǎn)品萬件(生產(chǎn)量與銷售量相等),為擴(kuò)大影響進(jìn)行促銷,促銷費用(萬元)滿足(其中為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為元/件.
(1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);
(2)促銷費用投入多少萬元時,此大學(xué)生所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的方格紙由若干個邊長為1的小正方形并在一起組成,方格紙中有兩個定點A,B,點C為小正方形的頂點,且
(1)畫出所有的向量 ;
(2)求| |的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x>1},B={x|x≥2}.
(1)求集合A∩(RB);
(2)若集合C={x|x﹣a>0},且滿足A∩C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
直角坐標(biāo)系中曲線的參數(shù)方程(為參數(shù)),在以坐標(biāo)原點為極點, 軸正半軸為極軸的極坐標(biāo)系中, 點的極坐標(biāo),在平面直角坐標(biāo)系中,直線經(jīng)過點,傾斜角為
(1)寫出曲線的直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)直線與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (p,q為常數(shù))是定義在(﹣1,1)上的奇函數(shù),且 .
(1)求函數(shù)f(x)的解析式;
(2)判斷并用定義證明f(x)在(﹣1,1)上的單調(diào)性;
(3)解關(guān)于x的不等式f(2x﹣1)+f(x)<0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com