7.已知四棱錐P-ABCD的底面為菱形,∠BAD=60°,側(cè)面PAD為正三角形,且平面PAD⊥平面ABCD,則下列說法中錯(cuò)誤的是( 。
A.異面直線PA與BC的夾角為60°B.若M為AD的中點(diǎn),則AD⊥平面PMB
C.二面角P-BC-A的大小為45°D.BD⊥平面PAC

分析 根據(jù)線面垂直,異面直線所成角的大小以及二面角的求解方法分別進(jìn)行判斷即可.

解答 解:對(duì)于A,∵AD∥BC,∴∠PAD為異面直線PA與BC的夾角,為60°,正確;
對(duì)于B,連PM,BM,則∵側(cè)面PAD為正三角形,
∴PM⊥AD,
又底面ABCD是∠DAB=60°的菱形,
∴三角形ABD是等邊三角形,
∴AD⊥BM,
∴AD⊥平面PBM,故B正確;
對(duì)于C,∵底面ABCD為菱形,∠DAB=60°平面PAD⊥平面ABCD,
∴BM⊥BC,則∠PBM是二面角P-BC-A的平面角,
設(shè)AB=1,則BM=$\frac{\sqrt{3}}{2}$,PM=$\frac{\sqrt{3}}{2}$,
在直角三角形PBM中,tan∠PBM=1,
即∠PBM=45°,故二面角P-BC-A的大小為45°,故C正確,
故錯(cuò)誤的是D,
故選:D.

點(diǎn)評(píng) 本題主要考查空間直線和平面位置關(guān)系以及二面角的求解,根據(jù)相應(yīng)的判斷和證明方法是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$+|x|)dx=$\frac{π}{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,F(xiàn)1,F(xiàn)2是橢圓${C_1}:\frac{x^2}{4}+{y^2}=1$與雙曲線C2的公共焦點(diǎn),A,B分別是C1,C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形,則雙曲線C2的漸近線方程是(  )
A.$y=±\sqrt{2}x$B.$y=±\frac{{\sqrt{2}}}{2}x$C.y=±$\sqrt{3}$xD.y=±$\frac{{\sqrt{6}}}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-(4a+1)x-8a+4,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$,若a=$\frac{1}{2}$,則函數(shù)f(x)的值域?yàn)镽;若函數(shù)f(x)是R上的減函數(shù),求實(shí)數(shù)a的取值范圍為[$\frac{1}{4}$,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,以坐標(biāo)原點(diǎn)O為圓心的單位圓與x軸正半軸相交于點(diǎn)A,點(diǎn)B、P在單位圓上,且B(-$\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$),∠AOB=α.
(1)求$\frac{5cosα+6sinα}{4cosα-3sinα}$的值;
(2)設(shè)∠AOP=θ($\frac{π}{6}$≤θ≤$\frac{2π}{3}$),$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{OP}$,四邊形OAQP的面積為S,f(θ)=($\overrightarrow{OA}$•$\overrightarrow{OQ}$-$\frac{1}{2}$)2+2S2-$\frac{1}{2}$,求f(θ)的最值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={1,2,3,4},B={x|x=2n,n∈A },則A∩B=( 。
A.{ 1,4}B.{ 2,4}C.{ 9,16}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知l是雙曲線$C:\frac{x^2}{4}-\frac{y^2}{2}=1$的一條漸近線,P是l上的一點(diǎn),F(xiàn)1,F(xiàn)2是C的兩個(gè)焦點(diǎn),若PF1⊥PF2,則△PF1F2的面積為( 。
A.12B.$3\sqrt{2}$C.$\frac{{4\sqrt{2}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證此結(jié)論,從全球組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題,代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況統(tǒng)計(jì)如表:(單位:人)
  立體幾何題 代數(shù)題 總計(jì)
 男同學(xué) 22 8 30
 女同學(xué) 8 12 20
 總計(jì) 30 20 50
(Ⅰ)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?
(Ⅱ)經(jīng)統(tǒng)計(jì)得,選擇做立體幾何題的學(xué)生正答率為$\frac{4}{5}$,且答對(duì)的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行探究,記抽取的兩人中答對(duì)的人數(shù)為X,求 X的分布列及數(shù)學(xué)期望.
附表及公式
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列方程表示的直線傾斜角為135°的是( 。
A.y=x-1B.y-1=$\frac{\sqrt{2}}{2}$(x+2)C.$\frac{x}{5}$+$\frac{y}{5}$=1D.$\sqrt{2}$x+2y=0

查看答案和解析>>

同步練習(xí)冊(cè)答案