【題目】5張獎券中有2張是中獎的,先由甲抽1張,然后由乙抽1張,抽后不放回,求:
(1)甲中獎的概率;
(2)甲、乙都中獎的概率;
(3)只有乙中獎的概率;
(4)乙中獎的概率.
【答案】(1);(2);(3);(4)
【解析】
(1)寫出所有的基本事件,找出甲中獎的基本事件有8種,所以可求甲中獎的概率為;
(2)寫出所有的基本事件,找出甲、乙都中獎的基本事件,然后可得概率;
(3)寫出所有的基本事件,找出只有乙中獎的基本事件,然后可得概率;
(4)寫出所有的基本事件,找出乙中獎的基本事件,然后可得概率.
將5張獎券編號為1,2,3,4,5,其中4,5為中獎獎券,用表示甲抽到號碼x,乙抽到號碼y,則所有可能的結果為(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4), (3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20種.
(1)甲中獎包含8個基本事件:(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),
.
(2)甲、乙都中獎包含2個基本事件:(4,5),(5,4),
.
(3)只有乙中獎包含6個基本事件:(1,4),(1,5),(2,4),(2,5),(3,4), (3,5),
∴.
(4)乙中獎包含8個基本事件:(1,4),(1,5),(2,4),(2,5),(3,4), (3,5),(4,5),(5,4),
∴.
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P﹣ABCD中,底面ABCD為平行四邊形,點M,N,Q分別在PA,BD,PD上.
(1)若PM:MA=BN:ND=PQ:QD,求證:平面MNQ∥平面PBC.
(2)若Q滿足PQ:QD=2,則M點滿足什么條件時,BM∥面AQC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2ωx+)+sin(2ωx-)+2cos2ωx,其中ω>0,且函數(shù)f(x)的最小正周期為π
(1)求ω的值;
(2)求f(x)的單調增區(qū)間
(3)若函數(shù)g(x)=f(x)-a在區(qū)間[-,]上有兩個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐(如圖一)的平面展開圖(如圖二)中,四邊形為邊長等于的正方形,和均為正三角形,在三棱錐中:
(I)證明:平面平面;
(Ⅱ)若點在棱上運動,當直線與平面所成的角最大時,求二面角的余弦值.
圖一
圖二
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準:(單位:噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 …… 分成9組,制成了如圖所示的頻率分布直方圖
(1)求頻率分布直方圖中的值;
(2)若該市政府看望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓 (a>b>0)的左焦點為F,上頂點為B. 已知橢圓的離心率為,點A的坐標為,且.
(I)求橢圓的方程;
(II)設直線l: 與橢圓在第一象限的交點為P,且l與直線AB交于點Q. 若 (O為原點) ,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在平行四邊形中,點是邊的中點,將沿折起,使點到達點的位置,且
(1)求證; 平面平面;
(2)若平面和平面的交線為,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com