精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,在平行四邊形中,邊的中點,將沿折起,使點到達點的位置,且

(1)求證; 平面平面;

(2)若平面和平面的交線為,求二面角的余弦值.

【答案】(1)詳見解析;(2).

【解析】

(1)先證明,可得平面,從而證得結果;(2)以E為原點, 所在直線分別為軸建立空間直角坐標系.求出平面與平面的法向量,代入公式即可得到結果.

解:(1)連接BE,在平行四邊形中,

,

,即,且.

中,得

又因為,,

,即.

又∵平面,平面,且,∴平面

又∵平面,∴平面⊥平面.

(2)由(1)得兩兩垂直,故以E為原點, 所在直線分別為軸建立空間直角坐標系.則,, ,

.∴ .

可知是平面的一個法向量,

設平面的一個法向量為

,則 ,可取

所以

即所求二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

I)求棱錐C-ADE的體積;

II)求證:平面ACE⊥平面CDE

III)在線段DE上是否存在一點F,使AF∥平面BCE?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】5張獎券中有2張是中獎的,先由甲抽1張,然后由乙抽1張,抽后不放回,求:

1)甲中獎的概率;

2)甲、乙都中獎的概率

3)只有乙中獎的概率;

4)乙中獎的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某游戲公司對今年新開發(fā)的一些游戲進行評測,為了了解玩家對游戲的體驗感,研究人員隨機調查了300名玩家,對他們的游戲體驗感進行測評,并將所得數據統(tǒng)計如圖所示,其中.

1)求這300名玩家測評分數的平均數;

2)由于該公司近年來生產的游戲體驗感較差,公司計劃聘請3位游戲專家對游戲進行初測,如果3人中有2人或3人認為游戲需要改進,則公司將回收該款游戲進行改進;若3人中僅1人認為游戲需要改進,則公司將另外聘請2位專家二測,二測時,2人中至少有1人認為游戲需要改進的話,公司則將對該款游戲進行回收改進.已知該公司每款游戲被每位專家認為需要改進的概率為,且每款游戲之間改進與否相互獨立.

i)對該公司的任意一款游戲進行檢測,求該款游戲需要改進的概率;

ii)每款游戲聘請專家測試的費用均為300/人,今年所有游戲的研發(fā)總費用為50萬元,現對該公司今年研發(fā)的600款游戲都進行檢測,假設公司的預算為110萬元,判斷這600款游戲所需的最高費用是否超過預算,并通過計算說明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列的前項和為,且,數列為等差數列,且,.

1)求數列的通項公式;

2)設,求數列的前項和;

3)若對任意正整數,不等式均成立,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】東海水晶制品廠去年的年產量為10萬件,每件水晶產品的銷售價格為100元,固定成本為80.從今年起,工廠投入100萬元科技成本,并計劃以后每年比上一年多投入100萬元科技成本.預計產量每年遞增1萬件,每件水晶產品的固定成本與科技成本的投入次數的關系是=.若水晶產品的銷售價格不變,次投入后的年利潤為萬元.①求出的表達式;問從今年算起第幾年利潤最高?最高利潤為多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知橢圓上任意一點到其兩個焦點,的距離之和等于,焦距為2c,圓,,是橢圓的左、右頂點,AB是圓O的任意一條直徑,四邊形面積的最大值為

(1)求橢圓C的方程;

(2)如圖,若直線與圓O相切,且與橢圓相交于M,N兩點,直線平行且與橢圓相切于PO,P兩點位于的同側),求直線,距離d的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點到點的距離比它到直線距離小

(Ⅰ)求點的軌跡的方程;

(Ⅱ)過點作互相垂直的兩條直線,它們與(Ⅰ)中軌跡分別交于點及點,且分別是線段的中點,求面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)若函數上是單調遞增函數,求實數的取值范圍;

(Ⅱ)若,對任意,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案