5.若集合A={x|x2-6x+8<0},集合B={x∈N|y=$\sqrt{3-x}$},則A∩B=( 。
A.{3}B.{1,3}C.{1,2}D.{1,2,3}

分析 求出A中不等式的解集確定出A,求出B中x的范圍,找出正整數(shù)解確定出B,找出兩集合的交集即可.

解答 解:由A中不等式變形得:(x-2)(x-4)<0,
解得:2<x<4,即A=(2,4),
由B中y=$\sqrt{3-x}$,x∈N,得到3-x≥0,x∈N,
解得:x≤3,x∈N,即B={0,1,2,3},
則A∩B={3},
故選:A.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知$\overrightarrow{{P}_{1}P}$=-$\frac{2}{3}$$\overrightarrow{P{P}_{2}}$,若實數(shù)λ滿足$\overrightarrow{P{P}_{2}}$=λ$\overrightarrow{{P}_{2}{P}_{1}}$,則λ的值為-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A={x|-1<x<2},集合B={x|0<x<1},則有( 。
A.A⊆BB.A?BC.B?AD.A=B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在等差數(shù)列{an}中,已知a3+a5=2,a7+a10+a13=9,則此數(shù)列的公差為( 。
A.$\frac{1}{3}$B.3C.$\frac{1}{2}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在單調(diào)遞增數(shù)列{an}中,a1=2,a2=4,且a2n-1,a2n,a2n+1成等差數(shù)列,a2n,a2n+1,a2n+2成等比數(shù)列,n=1,2,3,…(1)①求證:數(shù)列{$\sqrt{{a}_{2n}}$}為等差數(shù)列;②求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{$\frac{1}{{a}_{n}+\frac{1-(-1)^{n}}{8}}$的前n項和為Sn,證明:Sn>$\frac{4n}{3(n+3)}$,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在下班高峰期,記者在某紅綠燈路口隨機訪問10個步行下班的路人,其年齡的莖葉圖如圖:
(1)求這些路人年齡的中位數(shù)與方差;
(2)若從40歲以上的路人中,隨機抽取2人,求其中一定含有50歲以上的路人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x-1(x>-1)}\\{{e}^{x}(x≤-1)}\end{array}\right.$,若a<b,f(a)=f(b),則實數(shù)a-2b的取值范圍為( 。
A.$({-∞,\frac{1}{e}-1})$B.$({-∞,-\frac{1}{e}})$C.$({-∞,-\frac{1}{e}-2})$D.$({-∞,-\frac{1}{e}-2}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若直線l1:5x-12y+6=0,直線l2與l1垂直,則直線l2的斜率為$-\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.關(guān)于斜二側(cè)畫法,下列說法正確的是( 。
A.三角形的直觀圖可能是一條線段
B.平行四邊形的直觀圖一定是平行四邊形
C.正方形的直觀圖是正方形
D.菱形的直觀圖是菱形

查看答案和解析>>

同步練習冊答案