13.在等差數(shù)列{an}中,已知a3+a5=2,a7+a10+a13=9,則此數(shù)列的公差為( 。
A.$\frac{1}{3}$B.3C.$\frac{1}{2}$D.$\frac{1}{6}$

分析 利用等差數(shù)列的通項(xiàng)公式列出方程組,由此能求出此數(shù)列的公差.

解答 解:∵在等差數(shù)列{an}中,a3+a5=2,a7+a10+a13=9,
∴$\left\{\begin{array}{l}{{a}_{1}+2d+{a}_{1}+4d=2}\\{{a}_{1}+6d+{a}_{1}+9d+{a}_{1}+12d=9}\end{array}\right.$,
解得${a}_{1}=0,d=\frac{1}{3}$.
故選:A.

點(diǎn)評 本題考查等差數(shù)列的公差的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的通項(xiàng)公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)m∈R,其中實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥m}\\{2x-3y+6≥0}\\{3x-2y-6≤0}\end{array}\right.$.若|x+2y|≤18,則實(shí)數(shù)m的最小值-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某市一高中經(jīng)過層層上報(bào),被國家教育部認(rèn)定為2015年全國青少年足球特色學(xué)校.該校成立了特色足球隊(duì),隊(duì)員來自高中三個(gè)年級,人數(shù)為50人.視力對踢足球有一定的影響,因而對這50人的視力作一調(diào)查.測量這50人的視力(非矯正視力)后發(fā)現(xiàn)他們的視力全部介于4.75和5.35之間,將測量結(jié)果按如下方式分成6組:第一組[4.75,4.85),第二組[4.85,4.95),…,第6組[5.25,5.35],如圖是按上述分組方法得到的頻率分布直方圖.又知:該校所在的省中,全省喜愛足球的高中生視力統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全省100000名喜愛足球的高中生的視力服從正態(tài)分布N(5.01,0.0064).
(1)試評估該校特色足球隊(duì)人員在全省喜愛足球的高中生中的平均視力狀況;
(2)求這50名隊(duì)員視力在5.15以上(含5.15)的人數(shù);
(3)在這50名隊(duì)員視力在5.15以上(含5.15)的人中任意抽取2人,該2人中視力排名(從高到低)在全省喜愛足球的高中生中前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):若ξ~N(μ,σ2),則P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a,b為兩個(gè)不相等的非零實(shí)數(shù),則方程ax-y+b=0與bx2+ay2=ab所表示的曲線可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.2012年全國中學(xué)生機(jī)器人大賽選選拔賽中,機(jī)器人剛開始在原點(diǎn)位置,為了讓機(jī)器人完成某項(xiàng)任務(wù),學(xué)生給機(jī)器人設(shè)置了以下指令:先逆時(shí)針旋轉(zhuǎn)α角,然后向前進(jìn)1米,將該指令進(jìn)行一次稱為一次操作,試用向量解決以下問題.
(1)當(dāng)α=$\frac{π}{3}$時(shí),經(jīng)過幾次操作才能回到原點(diǎn)?
(2)是否存在α,使機(jī)器人經(jīng)過10次操作,能首次回到原點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)向量$\overrightarrow{a}$=(-1,$\sqrt{3}$),$\overrightarrow$=(cosωx,sinωx),已知函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的圖象關(guān)于直線x=$\frac{π}{3}$對稱,其中ω∈(-$\frac{1}{2}$,$\frac{5}{2}$).
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c分別為三個(gè)內(nèi)角A,B,C的對邊,銳角B滿足f($\frac{B}{2}$+$\frac{π}{6}$)=$\frac{2\sqrt{5}}{3}$,b=$\sqrt{2}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合A={x|x2-6x+8<0},集合B={x∈N|y=$\sqrt{3-x}$},則A∩B=(  )
A.{3}B.{1,3}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題:“對任意的x∈R,x2+x+1>0”的否定是( 。
A.不存在x∈R,x2+x+1>0B.存在x0∈R,x02+x0+1>0
C.存在x0∈R,x02+x0+1≤0D.對任意的x∈R,x2+x+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知關(guān)于x的函數(shù)f(x)=(a+1)x2-ax+a-1,a∈R是常數(shù).
(1)當(dāng)a=1時(shí),求不等式f(x)>0的解集;
(2)若?x∈R,都有f(x)<2x2,求a的取值范圍(用集合表示).

查看答案和解析>>

同步練習(xí)冊答案