11.已知雙曲線(xiàn)C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F2的直線(xiàn)交雙曲線(xiàn)C的右支于A(yíng),B兩點(diǎn),如果|AF1|=3a,|BF1|=5a,則此雙曲線(xiàn)的漸近線(xiàn)方程為y=$±\frac{{\sqrt{6}}}{2}$x.

分析 根據(jù)雙曲線(xiàn)的定義得到|BF2|=a,|BF2|=3a,從而得到三角形F1AB是直角三角形,根據(jù)勾股定理建立方程關(guān)系即可得到結(jié)論.

解答 解:∵|AF1|=3a,|BF1|=5a,
∴|AF1|-|BF2|=2a,|BF1|-|BF2|=2a,
則3a-|BF2|=2a,5a-|BF2|=2a,
即|BF2|=a,|BF2|=3a,
即|AB|=|BF2|+|BF2|=a+3a=4a,
則滿(mǎn)足|AF1|2+|AB|2=|BF1|2,
則∠F1AB=90°,
則|AF1|2+|AF2|2=|F1F2|2
即9a2+a2=4c2,
即10a2=4(a2+b2),
得3a2=2b2,
即$\frac{^{2}}{{a}^{2}}$=$\frac{3}{2}$,即$\frac{a}$=$\sqrt{\frac{3}{2}}$=$\frac{\sqrt{6}}{2}$,
即雙曲線(xiàn)的漸近線(xiàn)方程為y=$±\frac{{\sqrt{6}}}{2}$x,
故答案為:y=$±\frac{{\sqrt{6}}}{2}$x.

點(diǎn)評(píng) 本題主要考查雙曲線(xiàn)漸近線(xiàn)的求解,根據(jù)條件結(jié)合雙曲線(xiàn)的定義判斷三角形F1AB是直角三角形是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=ax3+bx2+cx+d的部分?jǐn)?shù)值如表:
x-3-2-10123456
y-80-2404001660144280
則函數(shù)y=lgf(x)的定義域?yàn)椋?1,1)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知log2(x+y)=log2x+log2y,則$\frac{4x}{x-1}$+$\frac{9y}{y-1}$的最小值是25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列函數(shù)f(x)中,滿(mǎn)足“對(duì)任意的x1,x2∈(0,+∞)時(shí),均(x1-x2)[f(x1)-f(x2)]>0”的是( 。
A.f(x)=($\frac{1}{2}$)xB.f(x)=x2-4x+4C.f(x)=|x+2|D.f(x)=log${\;}_{\frac{1}{2}}}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.直線(xiàn)x-$\sqrt{3}$y+3=0的傾斜角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$π<α<2π,cos(α-9π)=-\frac{3}{5},求cos(α-\frac{11π}{2})$的值( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.三個(gè)數(shù)${0.3^π},{π^{0.3}},sin\frac{20π}{3}$的大小順序是(  )
A.$sin\frac{20π}{3}<{0.3^π}<{π^{0.3}}$B.$sin\frac{20π}{3}<{π^{0.3}}<{0.3^π}$
C.${0.3^π}<sin\frac{20π}{3}<{π^{0.3}}$D.${0.3^π}<{π^{0.3}}<sin\frac{20π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.長(zhǎng)度為3的線(xiàn)段AB的端點(diǎn)A、B分別在x軸、y軸上運(yùn)動(dòng),若點(diǎn)P滿(mǎn)足$\overrightarrow{BP}$=2$\overrightarrow{PA}$.設(shè)動(dòng)點(diǎn)P軌跡為曲線(xiàn)C.
(I)求曲線(xiàn)C的方程;
(Ⅱ)點(diǎn)P在曲線(xiàn)C上,點(diǎn)F的坐標(biāo)為($\sqrt{3}$,0),若點(diǎn)Q是直線(xiàn)l:x=$\frac{4\sqrt{3}}{3}$上任意一點(diǎn),且滿(mǎn)足PF⊥FQ,是判斷直線(xiàn)PQ與曲線(xiàn)C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={x|x2-x-2<0},B={x|$\frac{1}{x-1}$≤1},則A∩B=( 。
A.(-1,1]B.(-1,1)C.D.[-1,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案