20.在△ABC中,若sinAcosB=1一cosAsinB,則這個三角形是直角三角形.

分析 移項后,利用兩角和的正弦公式即可得出sinC=1,于是C=$\frac{π}{2}$.

解答 解:∵sinAcosB=1一cosAsinB,∴sinAcosB+cosAsinB=1,即sin(A+B)=sinC=1,
∴C=$\frac{π}{2}$.
∴△ABC是直角三角形.
故答案為:直角.

點評 本題考查了兩角和的正弦公式,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{5x+2y-18≤0}\\{2x-y≥0}\\{x+y-3≥0}\end{array}\right.$,若直線kx-y+1=0經(jīng)過該可行域,則實數(shù)k的最大值是( 。
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.${C}_{4}^{1}$+${C}_{4}^{2}$+${C}_{4}^{3}$+${C}_{4}^{4}$=15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)方程(x-k)2+(y-1)2=-k2+k+2表示圓,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.己知平面向量|$\overrightarrow{OA}$|=2,$\overrightarrow{OA}$與$\overrightarrow{OB}$-$\overrightarrow{OA}$的夾角為120°,$\overrightarrow{OC}$=$λ\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),求|$\overrightarrow{OC}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合A={x|x=2k+1,k∈Z},集合B={x|x=4k±1,k∈Z},則(  )
A.A⊆BB.A?BC.A=BD.B⊆A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=x2+nx+m,若{x|f(x)=0}={x|f(f(x))=0}≠∅,則m+n的取值范圍是[0,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知在遞增等差數(shù)列{an}中,a1=2,a3是a1和a9的等比中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{1}{{({n+1}){a_n}}}$,Sn為數(shù)列{bn}的前n項和,是否存在實數(shù)m,使得Sn<m對于任意的n∈N+恒成立?若存在,請求實數(shù)m的取值范圍,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖所示,正三棱柱ABC-A1B1C1的底面邊長是2,側(cè)棱長是$\sqrt{3}$,D是AC的中點.
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)在線段AA1上是否存在一點E,使得平面B1C1E⊥平面A1BD?若存在,求出AE的長;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案