15.己知平面向量|$\overrightarrow{OA}$|=2,$\overrightarrow{OA}$與$\overrightarrow{OB}$-$\overrightarrow{OA}$的夾角為120°,$\overrightarrow{OC}$=$λ\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),求|$\overrightarrow{OC}$|的最小值.

分析 由$\overrightarrow{OC}$=$λ\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$可知A,B,C三點(diǎn)共線,于是|$\overrightarrow{OC}$|的最小值為O到直線AB的距離.

解答 解:∵$\overrightarrow{OC}$=$λ\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),
∴$\overrightarrow{BA}$=$\overrightarrow{OA}-\overrightarrow{OB}$,$\overrightarrow{AC}$=$\overrightarrow{OC}-\overrightarrow{OA}$=(λ-1)$\overrightarrow{OA}$-(λ-1)$\overrightarrow{OB}$,
∴$\overrightarrow{AC}$=(λ-1)$\overrightarrow{BA}$,
∴A,B,C三點(diǎn)共線,
∵$\overrightarrow{OA}$與$\overrightarrow{OB}$-$\overrightarrow{OA}$的夾角為120°,即$\overrightarrow{OA}$與$\overrightarrow{AB}$的夾角為120°,
∴∠OAB=60°,
∴O到直線AB的距離d=OA•sin60°=$\sqrt{3}$.
∴當(dāng)OC⊥AB時(shí),|$\overrightarrow{OC}$|取得最小值$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了平面向量的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.命題p:若$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-2,4),則$\overrightarrow{a}$∥$\overrightarrow$;命題q:若$\overrightarrow{a}$=(1,-3),$\overrightarrow$=(4,-2),λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$垂直,則λ=1,則下列命題中真命題是( 。
A.p∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若(1-2x)6=a0+a1x+a2x+…+a6x6,則|a0|+|a1|+|a2|+…+|a6|的值為(  )
A.1B.26C.35D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在數(shù)列{an}中,已知an=$\frac{n}{n+1}$,則{an}是( 。
A.遞增數(shù)列B.遞減數(shù)列C.常數(shù)列D.擺動(dòng)數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={x|y=$\sqrt{x+1}$},B={y|y<1},則A∩B=(  )
A.(-1,1)B.[-1,1]C.[-1,1)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,若sinAcosB=1一cosAsinB,則這個(gè)三角形是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知f(x)是定義在D上的函數(shù),若f(x)滿足:(1)對(duì)任意x∈D及任意正實(shí)數(shù)t,若x+t∈D,都有f(x+t)≥f(x);(2)存在正實(shí)數(shù)M,使得|f(x)|≤M,則稱f(x)為“單限行函數(shù)”,滿足|f(x)|≤M的最小正數(shù)M叫f(x)的“單限峰值”給出下列結(jié)論:
①f(x)=2016(x∈[-1,2])是“單限行函數(shù)”;
②f(x)=xsinx+cosx(x∈[0,$\frac{π}{2}$])是“單限行函數(shù)”,且“單限峰值”為1;
③若f(x)=x3-12x(x∈[m,m+2])是“單限行函數(shù)”,則-4<m<2;
④f(x)是定義在D上的“單限行函數(shù)”,若f(x1)=f(x2),則x1=x2
其中正確結(jié)論的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求經(jīng)過(guò)三點(diǎn)A(1,-1)、B(1,4)、C(4,2)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=sin2x+$\sqrt{3}sinxcosx,({x∈R})$.
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)$x∈[{0,\frac{π}{2}}]$時(shí),求f(x)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案