【題目】已知圓,圓心為點(diǎn),點(diǎn)是圓內(nèi)一個定點(diǎn),是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn)在圓上運(yùn)動.
(l)求動點(diǎn)的軌跡的方程;
(2)若為曲線上任意一點(diǎn),|的最大值;
(3)經(jīng)過點(diǎn)且斜率為的直線交曲線于兩點(diǎn)在軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)坐標(biāo):若不存在,說明理由.
【答案】(1) (2)3;(3) 存在,點(diǎn)
【解析】
(1)連接,根據(jù)中垂線性質(zhì)可知,可得,滿足橢圓定義;(2)根據(jù)(1)可知,點(diǎn),是橢圓的焦點(diǎn),所以,利用基本不等式求的最大值;(3)假設(shè)存在點(diǎn),設(shè),直線方程為,與橢圓方程聯(lián)立,得,利用韋達(dá)定理得到,由
代入坐標(biāo)表示,求.
解:(1)連接,是線段的垂直平分線:
點(diǎn)到兩定點(diǎn)距離之和為定值,
點(diǎn)的軌跡是以兩點(diǎn)為焦點(diǎn),長軸長為的橢圓,
動點(diǎn)的軌跡的方程為
(2)為曲線上任意一點(diǎn),
,當(dāng)且僅當(dāng)時,等號成立
(3)假設(shè)存在點(diǎn),設(shè),直線方程為,代入橢圓方程,得
由
由于對任意恒成立,因此
恒成立
即恒成立
恒成立,因此
綜上所述,存在點(diǎn)滿足題意
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,,,點(diǎn)Q在棱AB上.
(1)證明:平面.
(2)若三棱錐的體積為,求點(diǎn)B到平面PDQ的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評價某個維度的測評中,分優(yōu)秀、合格、尚待改進(jìn)三個等級進(jìn)行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:
表一:男生
男生 | 等級 | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 5 |
表二:女生
女生 | 等級 | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 3 |
(1)求,的值;
(2)從表一、二中所有尚待改進(jìn)的學(xué)生中隨機(jī)抽取3人進(jìn)行交談,記其中抽取的女生人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望;
(3)由表中統(tǒng)計(jì)數(shù)據(jù)填寫列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.
男生 | 女生 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計(jì) | 45 |
參考公式:,其中.
參考數(shù)據(jù):
0.01 | 0.05 | 0.01 | |
| 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若,求函數(shù)的零點(diǎn);
②若函數(shù)存在零點(diǎn),求的取值范圍.
(2)設(shè),若對任意恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)的直線與該橢圓交于兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知變量、之間的線性回歸方程為,且變量、之間的一-組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯誤的是( )
A.可以預(yù)測,當(dāng)時,B.
C.變量之間呈負(fù)相關(guān)關(guān)系D.該回歸直線必過點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在時鐘的表盤上作9個的扇形,每一個都覆蓋4個數(shù)字,每兩個覆蓋的數(shù)字不全相同.求證:一定可以找到3個扇形,恰好覆蓋整個表盤.舉一個反例說明,作8個扇形將不具有上述性質(zhì).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校九年級400名學(xué)生的體質(zhì)情況,隨機(jī)抽查了20名學(xué)生,測試1 min仰臥起坐的成績(次數(shù)),測試成績?nèi)缦拢?/span>
30 35 32 33 28 36 34 28 25 40
28 32 30 42 37 36 33 31 26 24
(1)20名學(xué)生的平均成績是多少?標(biāo)準(zhǔn)差是多少?
(2)次數(shù)位于與之間有多位同學(xué)?所占的百分比是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com