如圖所示,S為△ABC平面外一點(diǎn),SA⊥平面ABC,平面SAB⊥平面SBC.求證:AB⊥BC.

答案:
解析:

  證明:做AE⊥SB于E

  ∵平面SAB⊥平面SBC,平面SAB∩

  平面SBC=SB,

  ∴AE⊥平面SBC,∴AE⊥BC.

  ∵SA⊥平面ABC,

  又∵SA∩AE=A,∴SA⊥BC,

  ∴BC⊥平面SAB.∴AB⊥BC.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)你設(shè)計(jì)一個(gè)紙盒.如圖所示,ABCDEF是邊長(zhǎng)為30cm的正六邊形硬紙片,切去陰影部分所示的六個(gè)全等的四邊形,再沿虛線折起,正好形成一個(gè)無(wú)蓋的正六棱柱形狀的紙盒,G、H分別在AB、AF上,是被切去的一個(gè)四邊形的兩個(gè)頂點(diǎn),設(shè)AG=AH=x(cm).(1)若要求紙盒的側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
(2)若要求紙盒的容積V(cm3)最大,試問x應(yīng)取何值?并求此時(shí)紙盒的高與底面邊長(zhǎng)的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:“伴你學(xué)”新課程 數(shù)學(xué)·選修1-2(人教B版) 人教B版 題型:047

如圖所示,S為△ABC所在平面外一點(diǎn),SA⊥平面ABC,平面SAB⊥平面SBC,求證:AB⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,S是邊長(zhǎng)為a的正△ABC所在平面外一點(diǎn),SA=SB=SC=a,E、F分別是SCAB的中點(diǎn).

(1)求異面直線SCAB的距離;

(2)求異面直線SAEF所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案