已知二次函數(shù)y=x2-2x-3的圖象與x軸交于兩點(diǎn)A,B(xA<xB),與y軸交于點(diǎn)C,△ABC的外接圓的圓心為M(1,-1),斜率為3的直線l與⊙M交于不同兩點(diǎn)E,F(xiàn),且滿足ME⊥MF.
(1)求點(diǎn)A,B,C的坐標(biāo)及⊙M的半徑R的值;
(2)求直線l的方程;
(3)設(shè)P是直線l上的動(dòng)點(diǎn),且點(diǎn)A,C在l的同側(cè),求||PA|-|PC||的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).
考點(diǎn):圓與圓錐曲線的綜合,直線與圓錐曲線的關(guān)系
專題:直線與圓
分析:直接在函數(shù)解析式中取y=0求得A,B的坐標(biāo),取x=0求得C的坐標(biāo),結(jié)合給出的圓心坐標(biāo)求得圓的半徑;
(2)由(1)知圓的方程,設(shè)出直線l為y=3x+b,和圓的方程聯(lián)立后利用根與系數(shù)關(guān)系求得直線與圓兩交點(diǎn)的橫縱坐標(biāo)的積,結(jié)合ME⊥MF列式求得b,則直線方程可求;
(3)由點(diǎn)A,C在l的同側(cè)可得l的方程為3x-y-2-
19
=0
.連接AC并延長(zhǎng)交l與D,則D點(diǎn)為所求滿足條件的點(diǎn),求出AC的方程后和已知直線方程聯(lián)立求得||PA|-|PC||的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).
解答: 解:(1)在y=x2-2x-3中,取y=0,得x2-2x-3=0,解得:xA=-1,xB=3,
取x=0,解得yC=-3,
∴點(diǎn)A,B,C的坐標(biāo)分別為A(-1,0),B(3,0),C(0,-3);
又圓心為M(1,-1),∴⊙M的半徑R=|MA|=
22+(-1)2
=
5
;
(2)由(1)知圓的方程為(x-1)2+(y+1)2=5,
設(shè)直線l為y=3x+b,E(x1,y1),F(xiàn)(x2,y2),
聯(lián)立
y=3x+b
(x-1)2+(y+1)2=5
,得10x2+(6b+4)x+b2+2b-3=0.
△=(6b+4)2-40(b2+2b-3)=-4b2-32b+136>0,即b2+8b-34<0.
x1+x2=-
3b+2
5
x1x2=
b2+2b-3
10
,
y1y2=(3x1+b)(3x2+b)=9x1x2+3b(x1+x2)+b2
=
9b2+18b-27
10
-
9b2+6b
5
+b2
=
b2+6b-27
10

∵M(jìn)E⊥MF,
x1x2+y1y2=
2b2+8b-30
10
=0
,即b=-2±
19

∴直線l的方程為y=3x-2-
19
或y=3x-2+
19
;
(3)∵點(diǎn)A,C在l的同側(cè),∴l(xiāng)的方程為3x-y-2-
19
=0

連接AC并延長(zhǎng)交l與P,則P點(diǎn)為所求滿足條件的點(diǎn),
此時(shí)AC方程為3x+y+3=0,
聯(lián)立
3x-y-2-
19
=0
3x+y+3=0
,解得
x=
19
-1
3
y=-
19
-2

∴使||PA|-|PC||取得最大值的點(diǎn)P的坐標(biāo)為(
19
-1
3
,-
19
-2
),
最大值為|AC|=
(-1)2+(-3)2
=
10
點(diǎn)評(píng):本題考查了圓的方程的求法,考查了直線和圓的位置關(guān)系,訓(xùn)練了直線上的動(dòng)點(diǎn)與兩定點(diǎn)連線距離差的絕對(duì)值的最大值的求法,考查了計(jì)算能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)g(x)=ax-x-a(a>0且a≠1)圖象上有兩個(gè)不同的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)訄AC過點(diǎn)(1,0)且與直線x=-1相切.
(1)求動(dòng)圓圓心C的軌跡E方程;
(2)設(shè)A,B為軌跡E上異于原點(diǎn)O的兩個(gè)不同點(diǎn),直線OA,OB的傾斜角分別為α,β,且α+β=45°.當(dāng)α,β變化時(shí),求證:直線AB恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是橢圓
x2
25
+
y2
16
=1
上的一點(diǎn),F(xiàn)1,F(xiàn)2為焦點(diǎn),∠F1MF2=
π
6
,則△MF1F2的面積為( 。
A、
16
3
3
B、16(2+
3
)
C、16(2-
3
)
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x-
x
值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為[a,b]上的單調(diào)增函數(shù),求證:方程f(x)=0在[a,b]上至多有一個(gè)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:(sin2α-cos2α)2=1-sin4α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí)f(x)=x(1+
3x
),則當(dāng)x∈(-∞,0)時(shí),f(x)等于( 。
A、-x(1+
3x
B、x(1+
3x
C、-x(1-
3x
D、x(1-
3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案