某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本y(萬元)與年
產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可以近似地表示為y=-48x+8 000,已知此生產(chǎn)線年產(chǎn)量最大為210噸.
(1)求年產(chǎn)量為多少噸時(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(2)若每噸產(chǎn)品平均出廠價(jià)為40萬元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤?最大利潤是多少?
解 (1)每噸平均成本為(萬元).
則=+-48≥2-48=32,
當(dāng)且僅當(dāng)=,即x=200時(shí)取等號.
∴年產(chǎn)量為200噸時(shí),每噸平均成本最低為32萬元.
(2)設(shè)年獲得總利潤為R(x)萬元,
則R(x)=40x-y=40x-+48x-8 000
=-+88x-8 000
=-(x-220)2+1 680 (0≤x≤210).
∵R(x)在[0,210]上是增函數(shù),∴x=210時(shí),
R(x)有最大值為-(210-220)2+1 680=1 660.
∴年產(chǎn)量為210噸時(shí),可獲得最大利潤1 660萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知p是r的充分條件而不是必要條件,q是r的充分條件,s是r的必要條件,q是s
的必要條件.現(xiàn)有下列命題:
①s是q的充要條件;
②p是q的充分條件而不是必要條件;
③r是q的必要條件而不是充分條件;
④綈p是綈s的必要條件而不是充分條件;
⑤r是s的充分條件而不是必要條件.
則正確命題序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
下列結(jié)論:
①若命題p:∃x∈R,tan x=1;命題q:∀x∈R,x2-x+1>0.則命題“p∧綈q”是假
命題;
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是=-3;
③命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”.其中正確結(jié)論的序號為________.(把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
汽車經(jīng)過啟動、加速行駛、勻速行駛、減速行駛之后停車,若把這一過程中汽車的行駛
路程s看作時(shí)間t的函數(shù),其圖象可能是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
是否存在實(shí)數(shù)a,使函數(shù)f(x)=x2-2ax+a的定義域?yàn)閇-1,1]時(shí),值域?yàn)閇-2,2]?
若存在,求a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)對一切x,y∈R,都有f(x+y)=f(x)+f(y).
(1)求證:f(x)是奇函數(shù);
(2)若f(-3)=a,用a表示f(12).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com