【題目】給出以下命題:
⑴“ ”是“曲線 表示橢圓”的充要條件
⑵命題“若 ,則 ”的否命題為:“若 ,則 ”
⑶ 中, . 是斜邊 上的點(diǎn), .以 為起點(diǎn)任作一條射線 交 于 點(diǎn),則 點(diǎn)落在線段 上的概率是
⑷設(shè)隨機(jī)變量 服從正態(tài)分布 ,若 ,則
則正確命題有( )個(gè)
A.
B.
C.
D.
【答案】A
【解析】由題意得,(1)中,曲線表示橢圓滿足 ,解得 或 ,
所以是錯(cuò)誤的;(2)中命題“若 ,則 ”的否命題為:“若 ,則 ”,所以是錯(cuò)誤的;(3)中,在 中, . 是斜邊 上的點(diǎn), .以 為起點(diǎn)任作一條射線 交 于 點(diǎn),則 點(diǎn)落在線段 上的概率是 ,所以示錯(cuò)誤的;(4)中根據(jù)正態(tài)分布的圖象與性質(zhì)可知,隨機(jī)變量 服從正態(tài)分布 ,若 ,
則 ,所以示錯(cuò)誤的, 故答案為:A。
利用橢圓、概率、正態(tài)分布的簡(jiǎn)單性質(zhì)結(jié)合命題的真假判斷逐一分析得到結(jié)果。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知從A地到B地共有兩條路徑L1和L2 , 據(jù)統(tǒng)計(jì),經(jīng)過(guò)兩條路徑所用的時(shí)間互不影響,且經(jīng)過(guò)L1與L2所用時(shí)間落在各時(shí)間段內(nèi)的頻率分布直方圖分別如圖(1)和圖(2).
現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時(shí)間用于從A地到B地.
(1)為了盡最大可能在各自允許的時(shí)間內(nèi)趕到B地,甲和乙應(yīng)如何選擇各自的路徑?
(2)用X表示甲、乙兩人中在允許的時(shí)間內(nèi)能趕到B地的人數(shù),針對(duì)(1)的選擇方案,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
(1)當(dāng)a=﹣3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以坐標(biāo)原點(diǎn) 為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線 的極坐標(biāo)方程為 .
(1)求曲線 的參數(shù)方程;
(2)在曲線 上任取一點(diǎn) ,求的 最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的中心在原點(diǎn),離心率為 ,右焦點(diǎn)到直線 的距離為2.
(1)求橢圓 的方程;
(2)橢圓下頂點(diǎn)為 ,直線 ( )與橢圓相交于不同的兩點(diǎn) ,當(dāng) 時(shí),求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)若曲線 在 處的切線方程為 ,求 的極值;
(2)若 ,是否存在 ,使 的極值大于零?若存在,求出 的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=sin(ωx+φ)(其中|φ|< )的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點(diǎn)( )
A.向左平移 個(gè)單位長(zhǎng)度
B.向右平移 個(gè)單位長(zhǎng)度
C.向左平移 個(gè)單位長(zhǎng)度
D.向右平移 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=e2x , g(x)=kx+1(k∈R). (Ⅰ)若直線y=g(x)和函數(shù)y=f(x)的圖象相切,求k的值;
(Ⅱ)當(dāng)k>0時(shí),若存在正實(shí)數(shù)m,使對(duì)任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的方程是y=8,圓C的參數(shù)方程是 (φ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系. (Ⅰ)求直線l和圓C的極坐標(biāo)方程;
(Ⅱ)射線OM:θ=α(其中 )與圓C交于O、P兩點(diǎn),與直線l交于點(diǎn)M,射線ON: 與圓C交于O、Q兩點(diǎn),與直線l交于點(diǎn)N,求 的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com