【題目】已知從A地到B地共有兩條路徑L1和L2 , 據(jù)統(tǒng)計,經(jīng)過兩條路徑所用的時間互不影響,且經(jīng)過L1與L2所用時間落在各時間段內(nèi)的頻率分布直方圖分別如圖(1)和圖(2).
現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于從A地到B地.
(1)為了盡最大可能在各自允許的時間內(nèi)趕到B地,甲和乙應如何選擇各自的路徑?
(2)用X表示甲、乙兩人中在允許的時間內(nèi)能趕到B地的人數(shù),針對(1)的選擇方案,求X的分布列和數(shù)學期望.

【答案】
(1)解:用Ai表示事件“甲選擇路徑Li時,40分鐘內(nèi)趕到B地”,

Bi表示事件“乙選擇路徑Li時,50分鐘內(nèi)趕到B地”,i=1,2.

由頻率分布直方圖及頻率估計相應的概率可得:

P(A1)=(0.01+0.02+0.03)×10=0.6,

P(A2)=(0.01+0.04)×10=0.5.

∵P(A1)>P(A2),故甲應選擇L1

P(B1)=(0.01+0.02+0.03+0.02)×10=0.8,

P(B2)=(0.01+0.04+0.04)×10=0.9.

∵P(B2)>P(B1),故乙應選擇L2


(2)解:用M,N分別表示針對(1)的選擇方案,甲、乙在各自允許的時間內(nèi)趕到B地,

由(1)知P(M)=0.6,P(N)=0.9,又由題意知,M,N相互獨立,

∴P(X=0)=P( )=P( )P( )=0.4×0.1=0.04;

P(X=1)=P( N+M )=P( )P(N)+P(M)P(

=0.4×0.9+0.6×0.1=0.42;

P(X=2)=P(MN)=P(M)P(N)=0.6×0.9=0.54.

∴X的分布列為

X

0

1

2

P

0.04

0.42

0.54

∴E(X)=0×0.04+1×0.42+2×0.54=1.5.


【解析】(1)用Ai表示事件“甲選擇路徑Li時,40分鐘內(nèi)趕到B地”,Bi表示事件“乙選擇路徑Li時,50分鐘內(nèi)趕到B地”,i=1,2.由頻率分布直方圖及頻率估計概率求出P(A1)>P(A2),從而甲應選擇L1,P(B2)>P(B1),從而乙應選擇L2.(2)用M,N分別表示針對(1)的選擇方案,甲、乙在各自允許的時間內(nèi)趕到B地,P(M)=0.6,P(N)=0.9,M,N相互獨立,由題意X的可能取值為0,1,2,分別求出相應的概率,由此能求出X的分布列和E(X).
【考點精析】本題主要考查了頻率分布直方圖和離散型隨機變量及其分布列的相關(guān)知識點,需要掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,以O(shè)為極點,x軸非負半軸為極軸建立極坐標系,取相同的長度單位,已知曲線C的極坐標方程為ρ=2 sinθ,直線l的參數(shù)方程為 (t為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標方程和直線l的普通方程.
(Ⅱ)若P(3, ),直線l與曲線C相交于M,N兩點,求|PM|+|PN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,D是直角△ABC斜邊BC上一點,AC= DC.
(I)若∠DAC=30°,求角B的大。
(Ⅱ)若BD=2DC,且AD=2 ,求DC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的右焦點為F(2,0),M為橢圓的上頂點,O為坐標原點,且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1 , k2 , 且k1+k2=8,證明:直線AB過定點( ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)的圖象關(guān)于x= 對稱,則函數(shù)y=f( ﹣x)是(
A.偶函數(shù)且它的圖象關(guān)于點(π,0)對稱
B.偶函數(shù)且它的圖象關(guān)于點 對稱
C.奇函數(shù)且它的圖象關(guān)于點 對稱
D.奇函數(shù)且它的圖象關(guān)于點(π,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)).以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系.
(1)寫出曲線C的極坐標方程;
(2)設(shè)點M的極坐標為( ),過點M的直線l與曲線C相交于A,B兩點,若|MA|=2|MB|,求AB的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sinx( ).
(1)求函數(shù)f(x)在( )上的值域;
(2)在△ABC中,f(C)=0,且sinB=sinAsinC,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】考拉茲猜想又名3n+1猜想,是指對于每一個正整數(shù),如果它是奇數(shù),則對它乘3再加1;如果它是偶數(shù),則對它除以2.如此循環(huán),最終都能得到1.閱讀如圖所示的程序框圖,運行相應程序,輸出的結(jié)果i=(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下命題:
⑴“ ”是“曲線 表示橢圓”的充要條件
⑵命題“若 ,則 ”的否命題為:“若 ,則
中, . 是斜邊 上的點, .以 為起點任作一條射線 點,則 點落在線段 上的概率是
⑷設(shè)隨機變量 服從正態(tài)分布 ,若 ,則
則正確命題有( )個
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案