【題目】如圖,在中,,,將繞邊AB翻轉(zhuǎn)至,使面ABC,DBC的中點(diǎn),設(shè)Q是線段PA上的動點(diǎn),則當(dāng)PCDQ所成角取得最小值時(shí),線段AQ的長度為( )

A.B.C.D.

【答案】B

【解析】

建立空間直角坐標(biāo)系,計(jì)算,利用夾角公式列式,根據(jù)取得最大值,也即所成角取得最小值,求出的長度.

由余弦定理得,,所以為鈍角.由于平面平面,且交線為,過的垂線,交的延長線于,連接,則平面,所以,根據(jù)折疊前后的關(guān)系可知,故兩兩垂直.為空間直角坐標(biāo)原點(diǎn),分別為軸建立空間直角坐標(biāo)系如下圖所示,在等腰直角三角形中,,,故,,設(shè),且,則,所以.,設(shè)直線與直線所成角為,則,令,則,則,當(dāng)且僅當(dāng),即時(shí)取得最大值,也即所成角取得最小值.此時(shí).所以.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)討論函數(shù)的極值;

(2)若為整數(shù),,,不等式成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線,(為參數(shù)),將曲線上的所有點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的后得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

1)求曲線的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;

2)設(shè)直線l與曲線交于不同的兩點(diǎn)A,B,點(diǎn)M為拋物線的焦點(diǎn),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 設(shè)是實(shí)數(shù),若方程表示雙曲線,則.

B. 為真命題”是“為真命題”的充分不必要條件.

C. 命題“,使得”的否定是:“”.

D. 命題“若的極值點(diǎn),則”的逆命題是真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了個(gè)蜜柚進(jìn)行測重,其質(zhì)量分別在,,,,(單位:克)中,其頻率分布直方圖如圖所示,

(Ⅰ)已經(jīng)按分層抽樣的方法從質(zhì)量落在的蜜柚中抽取了個(gè),現(xiàn)從這個(gè)蜜柚中隨機(jī)抽取個(gè)。求這個(gè)蜜柚質(zhì)量均小于克的概率:

(Ⅱ)以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有個(gè)蜜柚等待出售,某電商提出了兩種收購方案:

方案一:所有蜜柚均以元/千克收購;

方案二:低于克的蜜柚以元/個(gè)收購,高于或等于克的以元/個(gè)收購.

請你通過計(jì)算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c

)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sinA+C);

)若a,b,c成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求證:恒成立;

(2)若關(guān)于的方程至少有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有除顏色外形狀大小完全相同的6個(gè)小球,其中有4個(gè)編號為1,2, 3, 4的紅球,2個(gè)編號為A、B的黑球,現(xiàn)從中任取2個(gè)小球.;

(1)求所取2個(gè)小球都是紅球的概率;

(2)求所取的2個(gè)小球顏色不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若射線 與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值

查看答案和解析>>

同步練習(xí)冊答案