【題目】已知函數.
(1)求函數的最小值;
(2)設,討論函數的單調性;
(3)若斜率為的直線與曲線交于,兩點,其中,求證:.
【答案】(1);(2)時,在區(qū)間遞增,時,在內遞增,在內遞減;(3)證明見解析.
【解析】
試題分析:(1)借助題設條件運用導數的知識求解;(2)借助題設運用導數的知識求解;(3)依據題設先等價轉化,再構設函數運用運用導數的知識分析推證.
試題解析:
(1),令,得,
當時,,當時,,
則在內遞減,在內遞增,
所以當時,.
(2),,
當時,恒有,在區(qū)間內是增函數;
當時,令,即,解得,
令,即,解得,
綜上,當時,在區(qū)間內是增函數,當時,在內單調遞增,在內單調遞減.
(3)證明:,要證明,即證,
等價于,令(由,知),
則只有證,由,知,故等價于(*)
<1>設,則,所以在內是增函數,當時,,所以,
<2>設,則,所以在內是增函數,所以當時,,即,
由<1><2>知(*)成立,所以.
科目:高中數學 來源: 題型:
【題目】設:實數滿足不等式,:函數無極值點.
(1)若“”為假命題,“”為真命題,求實數的取值范圍;
(2)已知. “”為真命題,并記為,且:,若是的必要不充分條件,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加高一年級期末考試的學生中抽出60名學生,將其成績(均為整數)分成六段, …后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,并補全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分;
(3)從成績是70分以上(包括70分)的學生中選兩人,求他們在同一分數段的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了促進學生的全面發(fā)展,鄭州市某中學重視學生社團文化建設,現用分層抽樣的方法從“話劇社”,“創(chuàng)客社”、“演講社”三個金牌社團中抽6人組成社團管理小組,有關數據見下表(單位:人):
社團名稱 | 成員人數 | 抽取人數 |
話劇社 | 50 | a |
創(chuàng)客社 | 150 | b |
演講社 | 100 | c |
(1)求的值;
(2)若從“話劇社”,“創(chuàng)客社”,“演講社”已抽取的6人中任意抽取2人擔任管理小組組長,求這2人來自不同社團的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(為常數,),且數列是首項為2,公差為2的等差數列.
(1)若,當時,求數列的前項和;
(2)設,如果中的每一項恒小于它后面的項,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:()與橢圓:相交所得的弦長為
(Ⅰ)求拋物線的標準方程;
(Ⅱ)設,是上異于原點的兩個不同點,直線和的傾斜角分別為和,當,變化且為定值()時,證明:直線恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)生產甲乙兩種產品均需用A,B兩種原料,已知生產1噸每種產品需原料及每天原料的可用限額如右表所示,如果生產1噸甲、乙產品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( )
A.18萬元 B.17萬元 C.16萬元 D.12萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P-ABCD,底面ABCD是邊長為2的蓌形,PA⊥平面ABCD,PA=2,∠ABC=60°,E,F分別是BC,PC的中點。
(1)求證:AE⊥PD;
(2)求二面角E-AF-C的余弦值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com