A. | f(x)=x3 | B. | f(x)=$\sqrt{-x}$ | C. | f(x)=2-x-2x | D. | f(x)=-lg|x| |
分析 根據(jù)題意,對選項(xiàng)中的函數(shù)的奇偶性與單調(diào)性進(jìn)行判斷分析即可.
解答 解:對于A,f(x)=x3,在定義域R內(nèi),是奇函數(shù),也是增函數(shù),不滿足題意;
對于B,f(x)=$\sqrt{-x}$,定義域是(-∞,0],非奇非偶的函數(shù),不滿足題意;
對于C,f(x)=2-x-2x,定義域是R,且f(-x)=2x-2-x=-(2-x-2x)=-f(x),是奇函數(shù);
也是定義域上的減函數(shù),滿足題意;
對于D,f(x)=-lg|x|,是定義域上的偶函數(shù),不滿足題意.
故選:C.
點(diǎn)評 本題考查了基本初等函數(shù)的奇偶性與單調(diào)性的應(yīng)用問題,是基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$-$\frac{4}{5}$i | B. | -$\frac{3}{5}$+$\frac{4}{5}$i | C. | $\frac{5}{3}$-$\frac{4}{3}$i | D. | -$\frac{5}{3}$+$\frac{4}{3}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,1) | B. | [1,2] | C. | (2,4] | D. | [2.4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | -7 | C. | 5 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7米/秒 | B. | 6米/秒 | C. | 5米/秒 | D. | 8米/秒 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com