分析 (1)設(shè)AC,BD交于點O,連結(jié)OE,則OE∥BD1,從而得到BD1∥平面AEC.
(2)三棱錐E-ADC的體積VE-ADC=$\frac{1}{3}×{S}_{△ADC}×DE$,由此能求出結(jié)果.
解答 證明:(1)設(shè)AC,BD交于點O,連結(jié)OE,
∵在邊長為2的正方體ABCD-A1B1C1D1中,E為DD1中點,
∴O是BD中點,∴OE∥BD1,
∵OE?平面BDD1,BD1?平面AEC,
∴BD1∥平面AEC.
解:(2)三棱錐E-ADC的體積:
VE-ADC=$\frac{1}{3}×{S}_{△ADC}×DE$=$\frac{1}{3}×\frac{1}{2}×2×2×1$=$\frac{2}{3}$.
點評 本題考查線面平行的證明,考查三棱錐的體積的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.3% | B. | 0.23% | C. | 1.3% | D. | 0.13% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{7}$,$\frac{1}{5}$]∪{3} | B. | [3,5]∪{$\frac{1}{7}$} | C. | [$\frac{1}{7}$,$\frac{1}{3}$)∪{5} | D. | [3,7)∪{$\frac{1}{5}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x3 | B. | f(x)=$\sqrt{-x}$ | C. | f(x)=2-x-2x | D. | f(x)=-lg|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | $\frac{1}{2}$ | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | -3 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | 1 | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com