16.已知復(fù)數(shù)z=2+i,則$\frac{\overline{z}}{z}$=(  )
A.$\frac{3}{5}$-$\frac{4}{5}$iB.-$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{5}{3}$-$\frac{4}{3}$iD.-$\frac{5}{3}$+$\frac{4}{3}$i

分析 由z=2+i,得$\overline{z}=2-i$,然后代入$\frac{\overline{z}}{z}$,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:由z=2+i,得$\overline{z}=2-i$,
則$\frac{\overline{z}}{z}$=$\frac{2-i}{2+i}=\frac{(2-i)^{2}}{(2+i)(2-i)}=\frac{3-4i}{5}=\frac{3}{5}-\frac{4}{5}i$,
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知偶函數(shù)f(x)在(0,+∞)上遞減,已知a=0.2${\;}^{\sqrt{2}}$,b=log${\;}_{\sqrt{2}}$0.2,c=$\sqrt{2}$0.2,則f(a),f(b),f(c)  大小為(  )
A.f(a)>f(b)>f(c)B.f(a)>f(c)>f(b)C.f(b)>f(a)>f(c)D.f(c)>f(a)>f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在多面體ABCDE中,平面ABE⊥平面ABCD,△ABE是等邊三角形,四邊形ABCD是直角梯形,AB⊥AD,AB⊥BC,AB=AD=$\frac{1}{2}$BC=2,M是EC的中點(diǎn).
(1)求證:DM∥平面ABE;
(2)求三棱錐M-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{3}$,離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓M的方程;
(2)若圓N:x2+y2=r2的斜率為k的切線l與橢圓M相交于P、Q兩點(diǎn),OP與OQ能否垂直?若能垂直,請(qǐng)求出相應(yīng)的r的值,若不能垂直,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,|F1F2|=6,P是E右支上一點(diǎn),PF1與y軸交于點(diǎn)A,△PAF2的內(nèi)切圓在邊AF2上的切點(diǎn)為Q,若|AQ|=$\sqrt{3}$,則E的離心率是( 。
A.2$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,小明同學(xué)在山頂A處觀測(cè)到,一輛汽車在一條水平的公路上沿直線勻速行駛,小明在A處測(cè)得公路上B,C兩點(diǎn)的俯角分別為30°,45°,且∠BAC=135°.若山高AD=100m,汽車從B點(diǎn)到C點(diǎn)歷時(shí)14s,則這輛汽車的速度為22.6m/s(精確到0.1)參考數(shù)據(jù):$\sqrt{2}$≈1.414,$\sqrt{5}$≈2.236.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知某次數(shù)學(xué)考試的成績(jī)服從正態(tài)分布N(116,82),則成績(jī)?cè)?40分以上的考生所占的百分比為( 。
(附:正態(tài)總體在三個(gè)特殊區(qū)間內(nèi)取值的概率值①P(μ-σ<X≤μ+σ)=0.6826;②P(μ-2σ<X≤μ+2σ)=0.9544;③P(μ-3σ<X≤μ+3σ)=0.9974)
A.0.3%B.0.23%C.1.3%D.0.13%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在高中學(xué)習(xí)過(guò)程中,同學(xué)們經(jīng)常這樣說(shuō):“如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒(méi)什么問(wèn)題.”某班針對(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論,現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績(jī),如表:
成績(jī)/編號(hào)12345
物理(x)9085746863
數(shù)學(xué)(y)1301251109590
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$$\overline{x}$)
參考數(shù)據(jù):902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求數(shù)學(xué)成績(jī)y關(guān)于物理成績(jī)x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$($\widehat$精確到0.1),若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);
(2)要從抽取的這五位學(xué)生中隨機(jī)選出三位參加一項(xiàng)知識(shí)競(jìng)賽,以X表示選中的學(xué)生的數(shù)學(xué)成績(jī)高于100分的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列函數(shù)中,在其定義域內(nèi),既是奇函數(shù)又是減函數(shù)的是(  )
A.f(x)=x3B.f(x)=$\sqrt{-x}$C.f(x)=2-x-2xD.f(x)=-lg|x|

查看答案和解析>>

同步練習(xí)冊(cè)答案