記函數(shù)f(x)=
x2-1
的定義域?yàn)锳,g(x)=lg[(x-a-1)(2a-x)](a<1)的定義域?yàn)锽.
(1)求A.
(2)若B⊆A,求實(shí)數(shù)a的取值范圍.
分析:(1)根據(jù)函數(shù)f(x)成立的條件,即可求A.
(2)根據(jù)B?A,建立條件關(guān)系即可求實(shí)數(shù)a的取值范圍.
解答:解:(1)由x2-1≥0,得,x≤-1,或x≥1,
即A=(-∞,-1]∪[1,+∞).
(2)由(x-a-1)(2a-x)>0,且a<1,
∴2a<a+1,
即B=(2a,a+1).
由于B⊆A,從而有2a≥1或a+1≤-1,
a≥
1
2
或a≤-2
結(jié)合a<1,故
1
2
≤a<1
或a≤-2.
從而實(shí)數(shù)a的取值范圍為(-∞,-2]∪[
1
2
,1)
點(diǎn)評(píng):本題主要考查函數(shù)定義域的求法,以及集合關(guān)系的應(yīng)用,考查學(xué)生的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某城市有甲、乙、丙3個(gè)旅游景點(diǎn),一位客人游覽這三個(gè)景點(diǎn)的概率分別是0.4,0.5,0.6,且客人是否游覽哪個(gè)景點(diǎn)互不影響,設(shè)ξ表示客人離開該城市時(shí)游覽的景點(diǎn)數(shù)與沒有游覽的景點(diǎn)數(shù)之差的絕對(duì)值.

(Ⅰ)求ξ的分布及數(shù)學(xué)期望;

(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調(diào)遞增”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某城市有甲、乙、丙3個(gè)旅游景點(diǎn),一位客人游覽這三個(gè)景點(diǎn)的概率分別是0.4,0.5,0.6,且客人是否游覽哪個(gè)景點(diǎn)互不影響,設(shè)ξ表示客人離開該城市時(shí)游覽的景點(diǎn)數(shù)與沒有游覽的景點(diǎn)數(shù)之差的絕對(duì)值.

(1)求ξ的分布及數(shù)學(xué)期望;

(2)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調(diào)遞增”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0119 月考題 題型:解答題

某大學(xué)開設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響。已知學(xué)生小張只選甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用ξ表示小張選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積。
(Ⅰ)求學(xué)生小張選修甲的概率;
(Ⅱ)記“函數(shù)f(x)=x2+ξx 為R上的偶函數(shù)”為事件A,求事件A的概率;
(Ⅲ)求ξ的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某城市有甲、乙、丙3個(gè)旅游景點(diǎn),一位客人游覽這三個(gè)景點(diǎn)的概率分別是0.4,0.5,0.6,且客人是否游覽哪個(gè)景點(diǎn)互不影響,設(shè)ξ表示客人離開該城市時(shí)游覽的景點(diǎn)數(shù)與沒有游覽的景點(diǎn)數(shù)之差的絕對(duì)值.

(1)求ξ的分布及數(shù)學(xué)期望;

(2)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調(diào)遞增”為事件A,求事件A的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案