5.已知等差數(shù)列{an}滿足a3=6,a4+a6=20.
(Ⅰ)求通項(xiàng)an
(II)設(shè)bn=$\frac{2}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (Ⅰ)由已知條件,利用等差數(shù)列的通項(xiàng)公式列出方程組,求出等差數(shù)列的首項(xiàng)和公差,由此能求出等差數(shù)列的通項(xiàng)公式.
(II)由已知求得數(shù)列{bn}的通項(xiàng)公式,利用“裂項(xiàng)法”即可求得數(shù)列{bn}的前n項(xiàng)和Tn

解答 解:(Ⅰ)數(shù)列{an}為等差數(shù)列,首項(xiàng)為:a1,公差為d,
∵a3=6,a4+a6=20.
$\left\{\begin{array}{l}{{a}_{1}+2d=6}\\{2{a}_{1}+8d=20}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=2}\end{array}\right.$,
∴an=2n…,(4分)
(II)∵bn=$\frac{2}{{{a_n}{a_{n+1}}}}$=$\frac{1}{2}$$\frac{1}{n(n+1)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+1}$),
Tn=b1+b2+b3+…+bn=$\frac{1}{2}$(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=$\frac{1}{2}$(1-$\frac{1}{n+1}$)=$\frac{n}{2(n+1)}$,
∴Tn=$\frac{n}{2(n+1)}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,考查利用“裂項(xiàng)法”求數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意裂項(xiàng)求和法的合理運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知關(guān)于x的不等式:ax(x-2)≥2x-4(a為實(shí)數(shù))
(1)若不等式的解集為R,求a;
(2)解關(guān)于x的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在正四棱錐V-ABCD中,底面正方形ABCD的邊長為1,側(cè)棱長為2,則異面直線VA與BD所成角的大小為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列說法中正確的是( 。
A.“若x2=1,則x=1或x=-1”的否命題為“若x2≠1,則x≠1或x≠-1”
B.已知命題“p∧q”為假命題,則命題“p∨q”也是假命題
C.設(shè)U為全集,集合A,B滿足(∁UA)∩B=(∁UB)∩A,則必有A=B=∅
D.設(shè)λ為實(shí)數(shù),“?x∈[-1,1],滿足$\sqrt{1-{x}^{2}}$≤λ”的充分不必要條件為“λ≥1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=$\sqrt{-{x}^{2}+3x+4}$+ln(x-1)的定義域是(1,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=sin(x+$\frac{π}{6}$)的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到圖象C1,再把圖象C1向右平移$\frac{π}{6}$個(gè)單位,得到圖象C2,則圖象C2對(duì)應(yīng)的函數(shù)表達(dá)式為(  )
A.y=sin2xB.y=sin($\frac{1}{2}$x+$\frac{π}{4}$)C.y=sin$\frac{1}{2}$xD.y=sin($\frac{1}{2}$x+$\frac{π}{12}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知非零向量$\overrightarrow a,\overrightarrow b$滿足($\overrightarrow a$+$\overrightarrow b$)⊥($\overrightarrow a$-$\frac{3}{2}$$\overrightarrow b$),且|$\overrightarrow a}$|=$\sqrt{2}$|${\overrightarrow b}$|,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在邊長為10的等邊三角形ABC中,兩個(gè)內(nèi)接正方形有一邊重疊,都有邊落在BC上,正方形甲有一個(gè)頂點(diǎn)在AB上,正方形乙有一頂點(diǎn)在AC上,求這兩個(gè)內(nèi)接正方形面積和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.不等式組$\left\{\begin{array}{l}2x+y-6≤0\\ x+y-3≥0,x≥0\end{array}$表示的平面區(qū)域的面積為(  )
A.9B.4C.$\frac{9}{2}$D.無窮大

查看答案和解析>>

同步練習(xí)冊(cè)答案