16.設(shè)函數(shù)y=2sin(x+$\frac{π}{6}$)cos(x+$\frac{π}{6}$)的圖象各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$,再向左平移$\frac{π}{24}$個(gè)單位,得到函數(shù)的圖象的對(duì)稱中心可以是( 。
A.($\frac{π}{4}$,0)B.($\frac{π}{8}$,0)C.($\frac{π}{2}$,0)D.($\frac{5π}{24}$,0)

分析 由倍角公式可求函數(shù)解析式,利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律可求y=cos4x,由4x=kπ+$\frac{π}{2}$,k∈Z,即可解得函數(shù)的對(duì)稱中心.

解答 解:∵y=2sin(x+$\frac{π}{6}$)cos(x+$\frac{π}{6}$)=sin[2(x+$\frac{π}{6}$)]=sin(2x+$\frac{π}{3}$),
∴圖象各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$,可得函數(shù)y=sin(4x+$\frac{π}{3}$),
再向左平移$\frac{π}{24}$個(gè)單位,得到函數(shù)y=sin[4(x+$\frac{π}{24}$)+$\frac{π}{3}$]=cos4x,
∴由4x=kπ+$\frac{π}{2}$,k∈Z,解得:x=$\frac{kπ}{4}$+$\frac{π}{8}$,k∈Z,
∴當(dāng)k=0時(shí),可得函數(shù)的圖象的對(duì)稱中心為:($\frac{π}{8}$,0).
故選:B.

點(diǎn)評(píng) 本題主要考查了二倍角的正弦函數(shù)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象和性質(zhì)的綜合應(yīng)用,考查了轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(Ⅰ)求平行于直線x-2y+1=0,且與它的距離為2$\sqrt{5}$的直線方程;
(Ⅱ)求經(jīng)過(guò)兩直線l1:x-2y+4=0和l2:x+y-2=0的交點(diǎn)P,且與直線l3:2x+3y+1=0垂直的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在極坐標(biāo)系中,曲線C1:ρ=2cosθ,曲線 ${C_2}:ρ{sin^2}θ=4cosθ$.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系xOy,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)).
(Ⅰ)求C1,C2的直角坐標(biāo)方程;
(Ⅱ)C與C1,C2交于不同四點(diǎn),這四點(diǎn)在C上的排列順次為P,Q,R,S,求||PQ|-|RS||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.執(zhí)行程序框圖,如果輸入的N的值為7,那么輸出的p的值是(  )
A.120B.720C.1440D.5040

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A為C上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)A的直線l交C于另一點(diǎn)B,交x軸的正半軸交于點(diǎn)D,且有|FA|=|FD|,當(dāng)點(diǎn)A的橫坐標(biāo)為3時(shí),△ADF為正三角形
(1)求C的方程
(2)延長(zhǎng)AF交拋物線于點(diǎn)E,過(guò)點(diǎn)E作拋物線的切線l1,求證:l1∥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥k}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若z=2x+y的最小值為8,則y-x的取值范圍為[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若a2+b2<c2,則△ABC的形狀是(  )
A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,直線y=x+$\sqrt{6}$與以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相較于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過(guò)橢圓C的右頂點(diǎn),求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.2016年9 月4日至5日在中國(guó)杭州召開(kāi)了G20峰會(huì),會(huì)后某10國(guó)集團(tuán)領(lǐng)導(dǎo)人站成前排3人后排7人準(zhǔn)備請(qǐng)攝影師給他們拍照,現(xiàn)攝影師打算從后排7人中任意抽2人調(diào)整到前排,使每排各5人.若調(diào)整過(guò)程中另外8人的前后左右相對(duì)順序不變,則不同調(diào)整方法的總數(shù)是( 。
A.$C_7^2A_3^2$B.$C_7^2A_5^5$C.$C_7^2A_5^2$D.$C_7^2A_4^2$

查看答案和解析>>

同步練習(xí)冊(cè)答案