精英家教網 > 高中數學 > 題目詳情
15.已知數列{an}滿足an+1=$\sqrt{2}{a_n},{a_3}$=2,它的前n項和Sn,求$(\sqrt{2}+1){a_{31}}-{S_{30}}$的值.

分析 數列{an}滿足an+1=$\sqrt{2}$an,可得:數列{an}是等比數列,公比為$\sqrt{2}$.由a3=2,可得${a}_{1}(\sqrt{2})^{2}$=2,解得a1.再利用通項公式與求和公式即可得出.

解答 解:數列{an}滿足an+1=$\sqrt{2}$an,可得:數列{an}是等比數列,公比為$\sqrt{2}$.
∵a3=2,∴${a}_{1}(\sqrt{2})^{2}$=2,解得a1=1.
∴a31=$1×(\sqrt{2})^{30}$=215,S30=$\frac{(\sqrt{2})^{30}-1}{\sqrt{2}-1}$=$(\sqrt{2}+1)({2}^{15}-1)$.
∴$(\sqrt{2}+1){a_{31}}-{S_{30}}$=$(\sqrt{2}+1)$215-$(\sqrt{2}+1)({2}^{15}-1)$=$\sqrt{2}$+1.

點評 本題考查了等比數列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

5.一個幾何體的三視圖如圖所示,則該幾何體的體積等于( 。
A.72B.48C.24D.16

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.設集合A={x|-a<x<a},其中a>0,命題p:1∈A,命題q:2∈A,若p∨q為真命題,p∧q為假命題,則a的取值范圍是( 。
A.0<a<1或a>2B.0<a<1或a≥2C.1<a≤2D.1≤a≤2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知實數x,y滿足$\left\{\begin{array}{l}{x-2y-6≤0}\\{2x+y≥0}\\{y≤2}\end{array}\right.$,則$\frac{y+4}{x-7}$的取值范圍為(-∞,$-\frac{8}{29}$]∪[2,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.在△ABC中,角A、B、C的對邊分別為a、b、c,A=2B.
(I )若sinB=$\frac{\sqrt{5}}{5}$,求cosC的值;
(II)若C為鈍角,求$\frac{c}$的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.口袋中有6個大小相同的小球,其中1個小球標有數字“3”,2個小球標有數字“2”,3個小球標有數字“1”,每次從中任取一個小球,取后放回,連續(xù)抽取兩次.
(I)求兩次取出的小球所標數字不同的概率;
(II)記兩次取出的小球所標數字之和為ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.某省組織了一次高考模擬考試,該省教育部門抽取了1000名考生的數學考試成績,并繪制成頻率分布直方圖如圖所示.
(Ⅰ)求樣本中數學成績在95分以上(含95分)的學生人數;
(Ⅱ)已知本次模擬考試全省考生的數學成績X~N(μ,σ2),其中μ近似為樣本的平均數,σ2近似為樣本方差,試估計該省的所有考生中數學成績介于100~138.2分的概率;
(Ⅲ)以頻率估計概率,若從該省所有考生中隨機抽取4人,記這4人中成績在[105,125)內的人數為X,求X的分布列及數學期望.
參考數據:$\sqrt{356}$≈18.9,$\sqrt{366}$≈19.1,$\sqrt{376}$≈19.4.
若Z∽N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.9826,P(μ-2σ<Z<μ+2σ)=0.9544,P(μ-3σ<Z<μ+3σ)=0.9976.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知實數x,y滿足$\left\{\begin{array}{l}{|x-y|≤1}\\{|x+y|≤3}\end{array}\right.$,則|3x+y|的最大值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.若($\sqrt{x}$+$\frac{2}{{x}^{2}}$)n展開式中只有第六項的二項式系數最大,則展開式中的常數項是(  )
A.90B.45C.120D.180

查看答案和解析>>

同步練習冊答案