20.如圖,直三棱柱ABC-A1B1C1中,D是AB的中點,AB=2$\sqrt{2}$,AA1=AC=CB=2.
(Ⅰ)證明:CD⊥平面AA1B1B;
(Ⅱ)求三棱錐V${\;}_{A-{A}_{1}DC}$的體積.

分析 (1)由AA1⊥平面ABC得出AA1⊥CD,由AC=BC得出CD⊥AB,故而CD⊥平面AA1B1B;
(2)由勾股定理的逆定理得出AC⊥BC,計算S△ACD,于是V${\;}_{A-{A}_{1}DC}$=V${\;}_{{A}_{1}-ACD}$=$\frac{1}{3}{S}_{△ACD}•A{A}_{1}$.

解答 證明:(I)∵AA1⊥平面ABC,CD?平面ABC,
∴AA1⊥CD.
∵AC=BC,D為AB的中點,
∴CD⊥AB,
又AB?平面AA1B1B,AA1?平面AA1B1B,AB∩AA1=A,
∴CD⊥平面AA1B1B.
(II)∵AB=2$\sqrt{2}$,AC=CB=2,∴AB2=AC2+BC2,
∴AC⊥BC.
∵D是AB的中點,
∴S△ACD=$\frac{1}{2}{S}_{△ABC}$=$\frac{1}{2}×2×2×\frac{1}{2}$=1.
又AA1⊥平面ABC,
∴V${\;}_{A-{A}_{1}DC}$=V${\;}_{{A}_{1}-ACD}$=$\frac{1}{3}{S}_{△ACD}•A{A}_{1}$=$\frac{1}{3}×1×2$=$\frac{2}{3}$.

點評 本題考查了線面垂直的判定,棱錐的體積計算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.為了解某校學生暑期參加體育鍛煉的情況,對某班M名學生暑期參加體育鍛煉的次數(shù)進行了統(tǒng)計,得到如表的頻率分布表與如圖直方圖:
組別鍛煉次數(shù)頻數(shù)(人)頻率
1[2,6)20.04
2[6,10)110.22
3[10,14)16c
4[14,18)150.30
5[18,22)de
6[22,26]20.04
合計M1.00
(1)求頻率分布表中M、d、e及頻率分布直方圖中f的值;
(2)求參加鍛煉次數(shù)的眾數(shù)(直接寫出答案,不要求計算過程);
(3)若參加鍛煉次數(shù)不少于18次為及格,估計這次體育鍛煉的及格率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設命題p:方程$\frac{{x}^{2}}{1-m}$+$\frac{{y}^{2}}{m+2}$=1表示雙曲線;命題q:$\frac{{x}^{2}}{2m}$+$\frac{{y}^{2}}{2-m}$=1表示焦點在x軸上的橢圓,若p∧q是假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知0<a<3,復數(shù)z=a+i(i是虛數(shù)單位),則|z|的取值范圍是(  )
A.(1,$\sqrt{10}$)B.(1,$\sqrt{3}$)C.(1,3)D.(1,10)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.將函數(shù)y=sinx(x∈R)的圖象上所有點的橫坐標變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標不變),再將所得圖象向右平移$\frac{π}{6}$個單位長度,得到函數(shù)y=g(x)的圖象,則y=g(x)的單調(diào)遞增區(qū)間為(  )
A.[-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ](k∈Z)B.[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)
C.[-$\frac{2π}{3}$+4kπ,$\frac{4π}{3}$+4kπ](k∈Z)D.[-$\frac{5π}{6}$+4kπ,$\frac{7π}{6}$+4kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源:2015-2016學年江蘇泰興中學高二上學期期末數(shù)學(文)試卷(解析版) 題型:填空題

為拋物線上的兩動點,且線段的長為6,為線段的中點,則點軸的最短距離為

查看答案和解析>>

科目:高中數(shù)學 來源:2015-2016學年江蘇泰興中學高二上學期期末數(shù)學(文)試卷(解析版) 題型:填空題

若集合滿足,則命題“”是命題“”的 條件.(填“充分不必要”,“必要不充分”,“充要”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤1}\\{-{x}^{2}+4x-\frac{5}{2},x>1}\end{array}\right.$,若函數(shù)y=f(x)-a恰有3個零點,則實數(shù)a的取值范圍是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,$\frac{3}{2}$)C.($\frac{1}{2}$,$\frac{5}{2}$)D.($\frac{3}{2}$,$\frac{5}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若多項式p(x)滿足p(1)=1,p(2)=3,則p(x)被x2-3x+2除所得的余式為2x-1.

查看答案和解析>>

同步練習冊答案