3.數(shù)列{an}是公差為正數(shù)的等差數(shù)列,a3,a5是方程x2-5x+6=0的兩實數(shù)根.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{2{a}_{n}{a}_{n+1}}$,記數(shù)列{bn}的前n項和為Sn,求證:Sn<1.

分析 (1)由方程x2-5x+6=0解得x=2,3.根據(jù)數(shù)列{an}是公差d為正數(shù)的等差數(shù)列,a3,a5是方程x2-5x+6=0的兩實數(shù)根.可得a3<a5,再利用等差數(shù)列的通項公式即可得出.
(2)bn=$\frac{1}{2{a}_{n}{a}_{n+1}}$=2$(\frac{1}{n+1}-\frac{1}{n+2})$,再利用“裂項求和”與不等式的性質(zhì)即可得出.

解答 (1)解:由方程x2-5x+6=0解得x=2,3.
∵數(shù)列{an}是公差d為正數(shù)的等差數(shù)列,a3,a5是方程x2-5x+6=0的兩實數(shù)根.
∴a3<a5,∴a3=2,a5=3.
∴$\left\{\begin{array}{l}{{a}_{1}+2d=2}\\{{a}_{1}+4d=3}\end{array}\right.$,解得d=$\frac{1}{2}$,a1=1.
∴an=1+$\frac{1}{2}(n-1)$=$\frac{n+1}{2}$.
(2)證明:bn=$\frac{1}{2{a}_{n}{a}_{n+1}}$=2$(\frac{1}{n+1}-\frac{1}{n+2})$,
∴數(shù)列{bn}的前n項和為Sn=$2[(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})]$
=2$(\frac{1}{2}-\frac{1}{n+2})$<1,
∴Sn<1.

點評 本題考查了等差數(shù)列的通項公式、“裂項求和”、不等式的性質(zhì)、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F(-1,0),點F到右頂點的距離為$\sqrt{2}$+1.
(1)求該橢圓方程;
(2)已知經(jīng)過點F且垂直于x軸的直線交橢圓于A,B兩點,點M(-$\frac{5}{4}$,0),求$\overrightarrow{MA}$•$\overrightarrow{MB}$的值;
(3)若經(jīng)過點F的動直線l與橢圓交于不同的兩點A,B,點M(-$\frac{5}{4}$,0),問$\overrightarrow{MA}$•$\overrightarrow{MB}$是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=2sin(2x+$\frac{π}{3}$)的圖象向左平移m(m>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則m的最小值是( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知橢圓C1與雙曲線C2具有相同的焦點F1,F(xiàn)2,A為C1與C2的一個公共點,△AF1F2為等腰三角形,設(shè)橢圓C1與雙曲線C2的離心率分別為e1,e2,則( 。
A.e1e2=1B.e1e2=2C.e1+e2=2D.$\frac{1}{{e}_{1}}$+$\frac{1}{{e}_{2}}$=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知橢圓的焦點為F1(0,-1)和F2(0,1),點P($\frac{2\sqrt{5}}{5}$,2)在橢圓上,則橢圓的短軸長為(  )
A.2B.2$\sqrt{3}$C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x2-2$\sqrt{2}$x+tanα只有一個零點.
(1)求tanα的值;
(2)化簡求值:$\frac{sin(\frac{π}{2}-α)-2sin(π+α)}{cos(-α)+sin(6π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知正項數(shù)列{an}的前n項和為Sn,且a1=1,an+12=Sn+1+Sn
(1)求{an}的通項公式;
(2)設(shè)bn=a2n-1•2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.cos40°cos160°+sin40°sin20°=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知直線x-y+3=0與圓O:x2+y2=r2(r>0)相交于M,N兩點,若$\overrightarrow{OM}•\overrightarrow{ON}=3$,則圓的半徑r=$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊答案