精英家教網 > 高中數學 > 題目詳情

已知y=f(x)是定義在R上的奇函數,且當x<0時,f(x)=1-e-x+1,則當x>0時,f(x)=________.

ex+1-1
分析:由x<0時,f(x)的解析式,可得當x>0時,f(-x)=1-ex+1.再結合f(x)是定義在R上的奇函數,可得函數在x>0時的解析式.
解答:∵當x>0時,-x<0,∴f(-x)=1-ex+1
又∵f(x)是定義在R上的奇函數,
∴f(x)=-f(-x)=ex+1-1
即當x>0時,f(x)=ex+1-1
故答案為:ex+1-1
點評:本題給出奇函數在(-∞,0)上的解析式,要我們求它在(0,+∞)上的解析式,著重考查了函數的奇偶性質的知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=x+
a
x
的定義域為(0,+∞),且f(2)=2+
2
2
.設點P是函數圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2x+
5x
的定義域為(0,+∞).設點P是函數圖象上的任意一點,過點P分別作直線y=2x和y軸的垂線,垂足分別為M、N.
(1)|PM|•|PN|是否為定值?若是,求出該定值;若不是,說明理由;
(2)設點O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x+
ax
的定義域為(0,+∞),a>0且當x=1時取得最小值,設點P是函數圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值;
(2)問:PM•PN是否為定值?若是,則求出該定值,若不是,請說明理由;
(3)設O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x3-ax+b存在極值點.
(1)求a的取值范圍;
(2)過曲線y=f(x)外的點P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點分別為A、B.
(。┳C明:a=b;
(ⅱ)請問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習冊答案