20.函數(shù)f(x),g(x)的定義域都是D,直線x=x0(x0∈D),與y=f(x),y=g(x)的圖象分別交于A,B兩點(diǎn),若|AB|的值是不等于0的常數(shù),則稱曲線 y=f(x),y=g(x)為“平行曲線”,設(shè)f(x)=ex-alnx+c(a>0,c≠0),且y=f(x),y=g(x)為區(qū)間(0,+∞)的“平行曲線”,g(1)=e,g(x)在區(qū)間(2,3)上的零點(diǎn)唯一,則a的取值范圍是[3e3,+∞).

分析 由題意可得|ex-alnx+c-g(x)|對(duì)x∈(0,+∞)恒為常數(shù),且不為0.令x=1求得常數(shù).再由題意可得f(x)=ex-alnx+c在(2,3)上無(wú)極值點(diǎn),運(yùn)用導(dǎo)數(shù)和構(gòu)造函數(shù),轉(zhuǎn)化為方程無(wú)實(shí)根,即可得到a的范圍.

解答 解:由題意可得|ex-alnx+c-g(x)|對(duì)x∈(0,+∞)恒為常數(shù),且不為0.
令x=1,可得|e-0+c-g(1)|=|e+c-e|=|c|>0.
由g(x)在區(qū)間(2,3)上的零點(diǎn)唯一,可得:
f(x)=ex-alnx+c在(2,3)上無(wú)極值點(diǎn),
即有f′(x)=ex-$\frac{a}{x}$=$\frac{x{e}^{x}-a}{x}$,
則xex-a=0無(wú)實(shí)數(shù)解,
由y=xex,可得y′=(1+x)ex>0,在(2,3)成立,即有函數(shù)y遞增,
可得y∈(2e2,3e3),
則a≥3e3
故答案為:[3e3,+∞).

點(diǎn)評(píng) 本題考查新定義的理解和運(yùn)用,考查函數(shù)零點(diǎn)問(wèn)題的解法,考查轉(zhuǎn)化思想的運(yùn)用,注意運(yùn)用導(dǎo)數(shù),判斷單調(diào)性,同時(shí)考查構(gòu)造法的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.直線ax-y+3=0與圓(x-2)2+(y-a)2=4相交于M,N兩點(diǎn),若|MN|≥2$\sqrt{3}$,則實(shí)數(shù)a的取值范圍是a≤-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知長(zhǎng)方體AC1中,AD=AB=2,AA1=1,E為D1C1的中點(diǎn),如圖所示.
(Ⅰ)在所給圖中畫出平面C1BD1與平面B1EC的交線(不必說(shuō)明理由);
(Ⅱ)證明:BD1∥平面B1EC;
(Ⅲ)求BD1中點(diǎn)到平面B1EC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.為了解本市居民的生活成本,甲、乙、內(nèi)三名同學(xué)利用假期分別對(duì)三個(gè)社區(qū)進(jìn)行了“家庭每月日常消費(fèi)額”的調(diào)查.他們將調(diào)查所得到的數(shù)據(jù)分別繪制成頻率分布直方圖(如圖所示),甲、乙、丙所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為x1,x2,x3,則它們的大小關(guān)系為(  )
A.s1>s2>s3B.s1>s3>s2C.s3>s2>s1D.s3>s1>s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入的a,b分別為17,14,則輸出的a=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.將石子擺成如圖所示的梯形形狀,稱數(shù)列5,9,14,20,…為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,此數(shù)列的第100項(xiàng),即a100=5252.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點(diǎn)E是BC邊的中點(diǎn),將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.
(Ⅰ) 求證:AB⊥平面ADC;
(Ⅱ) 若AD=1,二面角C-AB-D的平面角的正切值為$\sqrt{6}$,求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某飲料公司招聘了一名員工,現(xiàn)對(duì)其進(jìn)行一項(xiàng)測(cè)試,以便確定工資級(jí)別.公司準(zhǔn)備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料.公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料.若4杯都選對(duì),則月工資定為3500元;若4杯選對(duì)3杯,則月工資定為2800元;否則月工資定為2100元.令X表示此人選對(duì)A飲料的杯數(shù).假設(shè)此人對(duì)A和B兩種飲料沒有鑒別能力.
(1)求X的分布列;
(2)求此員工月工資被定為2100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在正方體ABCD-A1B1C1D1中,E是CC1的中點(diǎn),求證:
(1)AC1⊥BD;
(2)AC1∥平面BDE.

查看答案和解析>>

同步練習(xí)冊(cè)答案