某工廠要制造A種電子裝置45臺(tái),B種電子裝置55臺(tái),需用薄鋼板給每臺(tái)裝置配一個(gè)外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2㎡,可做A、B的外殼分別為3個(gè)和5個(gè),乙種薄鋼板每張面積3㎡,可做A、B的外殼分別為5個(gè)和6個(gè),求兩種薄鋼板各用多少?gòu),才能使總的用料面積最。
分析:根據(jù)已知條件中解:設(shè)用甲種薄金屬板x張,乙種薄金屬板y張,則可做A種的外殼分別為3x+5y個(gè),A種的外殼分別為5x+6y個(gè),由題意得出約束條件,及目標(biāo)函數(shù),然后利用線性規(guī)劃,求出最優(yōu)解.
解答:解:設(shè)用甲種薄金屬板x張,乙種薄金屬板y張,總的用料面積為z㎡.
則可做A種的外殼為3x+5y個(gè),B種的外殼為5x+6y個(gè),
由題意得:
3x+5y≥45
5x+6y≥55
x,y∈N
,
所有薄金屬板的總面積為:z=2x+3y
甲、乙兩種薄鋼板張數(shù)的取值范圍如圖中陰影部分所示(x,y取整數(shù)).
要使z最小,目標(biāo)函數(shù)表示的直線過點(diǎn)A(
5
7
,
60
7
),由于其不是整數(shù)點(diǎn),
故平移過點(diǎn)A的直線:z=2x+3y,當(dāng)其經(jīng)過平面區(qū)域內(nèi)的點(diǎn)(2,8)時(shí),
這時(shí)面積為28㎡,此時(shí)直線同時(shí)也經(jīng)過點(diǎn)(5,6).
因此用甲、乙兩種薄鋼板的張數(shù)分別為2張、8張或者5張、6張,才能使總的用料面積最小.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是簡(jiǎn)單的線性規(guī)劃的應(yīng)用,在解決線性規(guī)劃的應(yīng)用題時(shí),其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件⇒②由約束條件畫出可行域⇒③分析目標(biāo)函數(shù)Z與直線截距之間的關(guān)系⇒④使用平移直線法求出最優(yōu)解⇒⑤還原到現(xiàn)實(shí)問題中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠要制造A種電子裝置41臺(tái),B種電子裝置66臺(tái),需用薄鋼板給每臺(tái)裝置配一個(gè)外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2㎡,可做A、B的外殼分別為2個(gè)和7個(gè),乙種薄鋼板每張面積5㎡,可做A、B的外殼分別為7個(gè)和9個(gè),求兩種薄鋼板各用多少?gòu),才能使總的用料面積最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠要制造A種電子裝置45臺(tái),B電子裝置55臺(tái),為了給每臺(tái)裝配一個(gè)外殼,要從兩種不同的薄鋼板上截取,已知甲種薄鋼板每張面積為2平方米,可作A的外殼3個(gè)和B的外殼5個(gè);乙種薄鋼板每張面積3平方米,可作A和B的外殼各6個(gè),設(shè)用這兩種薄鋼板分別為x,y張,
(1)寫出x,y滿足的約束條件;
(2)x,y分別取什么值時(shí),才能使總的用料面積最小,最小面積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省肇慶市高三復(fù)習(xí)必修五綜合練習(xí) 題型:解答題

(本小題14分)某工廠要制造A種電子裝置41臺(tái),B種電子裝置66臺(tái),需用薄鋼板給每臺(tái)裝置配一個(gè)外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2㎡,可做A、B的外殼分別為2個(gè)和7個(gè),乙種薄鋼板每張面積5㎡,可做A、B的外殼分別為7個(gè)和9個(gè),求兩種薄鋼板各用多少?gòu)垼拍苁箍偟挠昧厦娣e最?

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠要制造A種電子裝置41臺(tái),B種電子裝置66臺(tái),需用薄鋼板給每臺(tái)裝置配一個(gè)外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2㎡,可做A、B的外殼分別為2個(gè)和7個(gè),乙種薄鋼板每張面積5㎡,可做A、B的外殼分別為7個(gè)和9個(gè),求兩種薄鋼板各用多少?gòu),才能使總的用料面積最小?
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案