設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若a4=4,則S7=( 。
A、28B、21C、14D、35
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的求和公式和性質(zhì)可得S7=7a4,代值計(jì)算可得.
解答: 解:∵Sn是等差數(shù)列{an}的前n項(xiàng)和,且a4=4,
∴S7=
7(a1+a7)
2
=
7×2a4
2
=7a4=28
故選:A
點(diǎn)評(píng):本題考查等差數(shù)列的求和公式,涉及等差數(shù)列的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司近年來科研費(fèi)用支出x萬元與公司所獲得利潤y萬元之間有如下的統(tǒng)計(jì)數(shù)據(jù):
x2345
y18273235
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+
a
;
(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該公司科研費(fèi)用支出為10萬元時(shí)公司所獲得的利潤.
參考數(shù)據(jù):2×18+3×27+4×32+5×35=420.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為扶持大學(xué)生自主創(chuàng)業(yè),市政府提供了80萬元的無息貸款,用于某大學(xué)生開辦公司,生產(chǎn)并銷售自主研發(fā)的一種電子產(chǎn)品,并約定用該公司的經(jīng)營利潤逐步償還無息貸款,一盒子該產(chǎn)品的生產(chǎn)成本為每件40元;員工每人每月工資是2500元,公司每月支出其它費(fèi)用15萬元,該產(chǎn)品每月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式如圖所示.
(1)求月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為50元時(shí),為保證公司月利潤達(dá)到5萬元,該公司應(yīng)安排員工多少人?
(3)若該公司有80名員工,則該公司最早可在幾個(gè)月內(nèi)還清無息貸款?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.若bcosC+CcosB=2asinA,則△ABC的形狀是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠從2015件產(chǎn)品中選取l00件抽樣檢查,若采用下面的方法選。合扔煤(jiǎn)單隨機(jī)抽樣從2015件產(chǎn)品中剔除15件,剩下的2000件再按系統(tǒng)抽樣的方法進(jìn)行抽取.則每件產(chǎn)品被抽中的概率( 。
A、均不相等
B、都相等,且為
20
403
C、不全相等
D、都相等,且為
1
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列中,前n項(xiàng)的和為Sn,若Sm=2n,Sn=2m,(m、n∈N*且m≠n),則公差d的值是( 。
A、-
4(m+n)
mn
B、-
mn
4(m+n)
C、-
2(m+n)
mn
D、-
mn
2(m+n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PC為球O的直徑,A,B是球面上兩點(diǎn),且AB=2
2
,∠APC=
π
4
,∠BPC=
π
3
,若球O的體積為
32π
3
,則棱錐P-ABC的體積為( 。
A、4
3
B、
3
2
2
C、
2
2
D、
4
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={0,2,3},B={x|x2-2x=0},則A∩B=(  )
A、{2}B、{0,2}
C、{0,3}D、{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明等式:
1-cosx+sinx
1+sinx+cosx
=
sinx
1+cosx

查看答案和解析>>

同步練習(xí)冊(cè)答案