分析 (1)確定點(diǎn)M的軌跡是以(1,0),(-1,0)為焦點(diǎn)的橢圓,即可求點(diǎn)M的軌跡方程;
(2)由題意,$\frac{|MN|}lt7vddv$=$\frac{\sqrt{(x-t)^{2}+{y}^{2}}}{|x-4|}$=$\sqrt{\frac{\frac{1}{4}{x}^{2}-2tx+({t}^{2}+3)}{{x}^{2}-8x+16}}$,由此可得比值,即可得出結(jié)論.
解答 解:(1)由題意知,點(diǎn)M在線段CQ上,從而有|CQ|=|MQ|+|MC|.
又點(diǎn)M在AQ的垂直平分線上,則|MA|=|MQ|,
∴|MA|+|MC|=|CQ|=4.∵A(1,0),C(-1,0),
∴點(diǎn)M的軌跡是以(1,0),(-1,0)為焦點(diǎn)的橢圓,
所以2a=4,a=2,b=$\sqrt{3}$
∴橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1…(6分)
(2)由題意,$\frac{|MN|}xf75r5v$=$\frac{\sqrt{(x-t)^{2}+{y}^{2}}}{|x-4|}$=$\sqrt{\frac{\frac{1}{4}{x}^{2}-2tx+({t}^{2}+3)}{{x}^{2}-8x+16}}$,
∴$\frac{\frac{1}{4}}{1}=\frac{2t}{8}=\frac{{t}^{2}+3}{16}$,∴$t=1,λ=\frac{1}{2}$,即N(1,0),$λ=\frac{1}{2}$…(12分)
點(diǎn)評(píng) 本題考查橢圓的定義與方程,考查恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[5-2\sqrt{2},5+2\sqrt{2}]$ | B. | $[\sqrt{5},\sqrt{29}]$ | C. | $[\sqrt{5},\sqrt{61}]$ | D. | $[\sqrt{29},\sqrt{61}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,3] | B. | [-1,3] | C. | [1,+∞)∪(-∞,-3] | D. | [3,+∞)∪(-∞,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | l與C相離 | B. | l與C相切 | ||
C. | l與C相交 | D. | 以上三個(gè)選項(xiàng)均有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{7}{4}$ | C. | $\frac{23}{12}$ | D. | $\frac{49}{24}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com