P是雙曲線數(shù)學(xué)公式的右支上一點(diǎn),M、N分別是圓(x+5)2+y2=9和(x-5)2+y2=4上的點(diǎn),則|PM|-|PN|的最大值為________.

13
分析:先由已知條件知道雙曲線的兩個(gè)焦點(diǎn)為兩個(gè)圓的圓心,再利用平面幾何知識把|PM|-|PN|轉(zhuǎn)化為雙曲線上的點(diǎn)到兩焦點(diǎn)之間的距離即可求|PM|-|PN|的最大值.
解答:雙曲線的兩個(gè)焦點(diǎn)為F1(-5,0)、F2(5,0),為兩個(gè)圓的圓心,半徑分別為r1=3,r2=2,
|PM|max=|PF1|+3,|PN|min=|PF2|-2,
故|PM|-|PN|的最大值為(|PF1|+3)-(|PF2|-2)=|PF1|-|PF2|+5=2×4+5=13.
故答案為:13.
點(diǎn)評:本題主要考查雙曲線的幾何性質(zhì)以及平面幾何等基礎(chǔ)知識,考查用代數(shù)方法研究圓錐曲線的性質(zhì)和數(shù)形結(jié)合的數(shù)學(xué)思想,考查解決問題的能力和運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省成都市高三三診模擬考試文科數(shù)學(xué) 題型:填空題

.已知P是雙曲線的右支上一點(diǎn),A1, A2分別為雙曲線的左、右頂點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),雙曲線的離心率為,有下列命題:

    ①雙曲線的一條準(zhǔn)線被它的兩條漸近線所截得的線段長度為;

    ②若

    ③的內(nèi)切圓的圓心橫坐標(biāo)為;

    ④若直線PF1的斜率為

    其中正確的命題的序號是           。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年四川省高三第三次模擬考試(理) 題型:填空題

已知P是雙曲線的右支上一點(diǎn),A1,A2分別為雙曲線的左、右頂點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),雙曲線的離心率為e,有下列命題:

    ①雙曲線的一條準(zhǔn)線被它的兩條漸近線所截得的線段長度為

②若,則e的最大值為

的內(nèi)切圓的圓心橫坐標(biāo)為a;

④若直線PF1的斜率為k,則

其中正確的命題的序號是                  .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省成都市石室中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:填空題

已知P是雙曲線的右支上一點(diǎn),A1,A2分別為雙曲線的左、右頂點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),雙曲線的離心率為e,有下列命題:①雙曲線的一條準(zhǔn)線被它的兩條漸近線所截得的線段長度為;
②若|PF1|=e|PF2|,則e的最大值為;③△PF1F2的內(nèi)切圓的圓心橫坐標(biāo)為a;④若直線PF1的斜率為k,則e2-k2>1,其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年北京市石景山區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知P是雙曲線的右支上一點(diǎn),A1,A2分別為雙曲線的左、右頂點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),雙曲線的離心率為e,有下列命題:
①雙曲線的一條準(zhǔn)線被它的兩條漸近線所截得的線段長度為
②若|PF1|=e|PF2|,則e的最大值為;
③△PF1F2的內(nèi)切圓的圓心橫坐標(biāo)為a;
其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年北京市石景山區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知P是雙曲線的右支上一點(diǎn),A1,A2分別為雙曲線的左、右頂點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),雙曲線的離心率為e,有下列命題:
①雙曲線的一條準(zhǔn)線被它的兩條漸近線所截得的線段長度為
②若|PF1|=e|PF2|,則e的最大值為;
③△PF1F2的內(nèi)切圓的圓心橫坐標(biāo)為a;
其中正確命題的序號是   

查看答案和解析>>

同步練習(xí)冊答案