【題目】2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:
研發(fā)費用(百萬元) | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
銷量(萬盒) | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);
(2)該藥企準備生產(chǎn)藥品的三類不同的劑型,,,并對其進行兩次檢測,當(dāng)?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設(shè)經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.
附:(1)相關(guān)系數(shù)
(2),,,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,一單位圓的圓心的初始位置在,此時圓上一點P的位置在,圓在x軸上沿正向滾動.當(dāng)圓滾動到圓心位于時,的坐標(biāo)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)無窮數(shù)列的前項和為,已知,.
(1)求的值;
(2)求數(shù)列的通項公式;
(3)是否存在數(shù)列的一個無窮子數(shù)列,使對一切均成立?若存在,請寫出數(shù)列的所有通項公式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線交拋物線于兩點,過點分別作拋物線的切線,若兩條切線互相垂直且交于點.
(1)證明:直線恒過定點;
(2)若直線的斜率為1,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足;數(shù)列的前項和為,且滿足,,.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的通項公式;
(3)是否存在正整數(shù),使得恰為數(shù)列中的一項?若存在,求滿足要求的那幾項;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 命題“x∈R,使得”的否定是:“x∈R,”.
B. “為真命題”是“為真命題”的必要不充分條件.
C. ,“”是“”的必要不充分條件.
D. 命題p:“”,則﹁p是真命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個結(jié)論中正確的個數(shù)是
(1)對于命題使得,則都有;
(2)已知,則
(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;
(4)“”是“”的充分不必要條件.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院一天派出醫(yī)生下鄉(xiāng)醫(yī)療,派出醫(yī)生人數(shù)及其概率如下:
醫(yī)生人數(shù) | 0 | 1 | 2 | 3 | 4 | 5人及以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.2 | 0.2 | 0.04 |
求:(1)派出醫(yī)生至多2人的概率;
(2)派出醫(yī)生至少2人的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com