設(shè),且,“”是“”的( )

A.充分而不必要條件 B.必要而不充分條件

C.充分必要條件 D.既不充分也不必要條件

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西南昌市高三新課標(biāo)一輪復(fù)習(xí)一數(shù)學(xué)試卷(解析版) 題型:選擇題

”是“”的( )

A.充要條件 B.充分不必要條件

C.必要不充分條件 D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西上高縣二中高二文9月月考數(shù)學(xué)文試卷(解析版) 題型:選擇題

若直線與圓交于兩點(diǎn)(其中為坐標(biāo)原點(diǎn)),則的最小值為( )

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年四川成都石室中學(xué)高二文下期中數(shù)學(xué)試卷(解析版) 題型:填空題

在橢圓中, 斜率為的直線交橢圓于左頂點(diǎn)和另一點(diǎn),點(diǎn)軸上的射影恰好為右焦點(diǎn),若橢圓離心率,則的值為_(kāi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年四川成都石室中學(xué)高二文下期中數(shù)學(xué)試卷(解析版) 題型:選擇題

過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn), 且點(diǎn)平分弦,則直線的方程為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年四川成都石室中學(xué)高二理下期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,在等腰梯形中,,中點(diǎn), 點(diǎn)分別為的中點(diǎn), 將沿折起到 的位置,使得平面平面(如圖 ).

(1)求證:;

(2)求直線與平面所成角的正弦值;

(3)側(cè)棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年四川成都石室中學(xué)高二理下期中數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)奇函數(shù)上存在導(dǎo)數(shù),且在,若,則實(shí)數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系中,以0為極點(diǎn),x軸正半軸為極軸,建立極坐際系.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$ (t為參數(shù)),圓0的極坐際方程為p=$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(1)將直線l與圓0的方程化為直角坐標(biāo)方程,并證明直線l過(guò)定點(diǎn)P($\frac{1}{2}$,1);
(2)設(shè)直線1與圓0相交于A,B兩點(diǎn),求證:點(diǎn)P到A,B兩點(diǎn)的距離之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知命題p:“?x∈[0,1],a≥ex”;命題q:“?x0∈R,x${\;}_{0}^{2}$+4x0+a=0”.若命題“p∧q”是假命題,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,4]B.(-∞,1)∪(4,+∞)C.(-∞,e)∪(4,+∞)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案