如圖示,給出的是某幾何體的三視圖,其中正視圖與側(cè)視圖都是邊長為2的正三角形,俯視圖為半徑等于1的圓.試求這個幾何體的體積與側(cè)面積.

,

解析試題分析:該圓錐結(jié)合體積公式和側(cè)面積公式可求出其體積和側(cè)面積。
解:根據(jù)幾何體的三視圖知,

原幾何體是以半徑為1的圓為底面且體高為的圓錐
由于該圓錐的母線長為2,
則它的側(cè)面積,
體積
考點:由三視圖求面積、體積.
點評:本題考查的知識點是由三視圖求體積和表面積,其中根據(jù)已知的三視圖判斷出幾何體的形狀及底面半徑,母線長等幾何量是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱中,側(cè)棱底面,的中點,.

(Ⅰ)求證://平面;
(Ⅱ)設(shè),求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,分別為、的中點,上的點,且

(I)證明:∥平面;
(Ⅱ)若,,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的幾何體ABCDFE中,△ABC,△DFE都是等邊三角形,且所在平面平行,四邊形BCED為正方形,且所在平面垂直于平面ABC.

(Ⅰ)證明:平面ADE∥平面BCF;
(Ⅱ)求二面角D-AE-F的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖所示,M、N分別為A1B、B1C1的中點.

(1)求證:MN//平面ACC1A1;
(2)求證:MN^平面A1BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在正方體中,棱長為2,是棱上中點,是棱中點,(1)求證:;(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知三棱錐的三視圖如圖所示.

(Ⅰ)求證:是直角三角形;
 求三棱錐是全面積;
(Ⅲ)當(dāng)點在線段上何處時,與平面所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

ABC的邊AB,BC,CA上分別取D,E,F(xiàn).使得DE=BE,F(xiàn)E=CE,又點O是△ADF的外心。

(Ⅰ)證明:D,E,F(xiàn),O四點共圓;
(Ⅱ)證明:O在∠DEF的平分線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,M是PD的中點.

(1)求證:平面ABM⊥平面PCD;
(2)求直線CD與平面ACM所成角的正弦值;
(3)以AC的中點O為球心、AC為直徑的球交PC于點N求點N到平面ACM的距離.

查看答案和解析>>

同步練習(xí)冊答案