如圖,直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于點D.

(1)證明:DB=DC;

(2)設(shè)圓的半徑為1,BC=,延長CE交AB于點F,求△BCF外接圓的半徑.

 

【答案】

(1)見解析   (2)

【解析】

(1)證明:連接DE,交BC于點G.

由弦切角定理得,

∠ABE=∠BCE.

而∠ABE=∠CBE,

故∠CBE=∠BCE,BE=CE.

又DB⊥BE,

所以DE為直徑,

則∠DCE=90°,

由勾股定理可得DB=DC.

(2)解:由(1)知,∠CDE=∠BDE,DB=DC,

故DG是BC的中垂線,

所以BG=.

設(shè)DE的中點為O,連接BO,

則∠BOG=60°.

從而∠ABE=∠BCE=∠CBE=30°,

所以CF⊥BF,

故Rt△BCF外接圓的半徑等于.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-1:幾何證明選講)
如圖,直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于D.
(Ⅰ)證明:DB=DC;
(Ⅱ)設(shè)圓的半徑為1,BC=
3
,延長CE交AB于點F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求證:平面DAF⊥平面CBF;
(Ⅱ)求直線AB與平面CBF所成角的大;
(Ⅲ)當(dāng)AD的長為何值時,平面DFC與平面FCB所成的銳二面角的大小為60°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB為圓O的直徑,D為AB延長線上一點,直線DC切圓O于點C,∠DAC=30°,OD=10,則圓O的半徑r=
5
5
,DC=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳一模)請從下面兩題中選做一題,如果兩題都做,以第一題的得分為最后得分.
(1)在極坐標(biāo)系中,過圓ρ=4cosθ的圓心,且垂直于極軸的直線方程為
ρcosθ=2
ρcosθ=2

(2)如圖,AB為⊙O的直徑,弦AC、BD交于點P,若AB=3,CD=1,則sin∠APD=
2
2
3
2
2
3

查看答案和解析>>

同步練習(xí)冊答案