【題目】在直角坐標(biāo)系內(nèi),已知A(3,3)是⊙C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,若⊙C上存在點P,使∠MPN=90°,其中M,N的坐標(biāo)分別為(﹣m,0)(m,0),則m的最大值為( )
A.4
B.5
C.6
D.7
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知tanα, 是關(guān)于x的方程x2﹣kx+k2﹣3=0的兩實根,且3π<α< π,求cos(3π+α)﹣sin(π+α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,且橢圓上任意一點到兩個焦點的距離之和為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓相交于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某幾何體的三視圖中,俯視圖是邊長為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)和,若存在常數(shù),對于任意,不等式都成立,則稱直線是函數(shù)的分界線. 已知函數(shù)為自然對數(shù)的底, 為常數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),試探究函數(shù)與函數(shù)是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項公式為an= ﹣n.
(1)證明:數(shù)列{an}是等差數(shù)列;
(2)求此數(shù)列的前二十項和S20 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線x2=y+1上一定點A(﹣1,0)和兩動點P,Q,當(dāng)PA⊥PQ時,點Q的橫坐標(biāo)的取值范圍是( )
A.(﹣∞,﹣3]
B.[1,+∞)
C.[﹣3,1]
D.(﹣∞,﹣3]∪[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,已知四邊形是由直角△和直角梯形拼接而成的,其中
.且點為線段的中點, , 現(xiàn)將△沿進行翻折,使得二面角
的大小為,得到圖形如圖(2)所示,連接,點分別在線段上.
(1)證明: ;
(2)若三棱錐的體積為四棱錐體積的,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0)
(1)若a=1,證明:y=f(x)在R上單調(diào)遞減;
(2)當(dāng)a>1時,討論f(x)零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com