【題目】如圖,某幾何體的三視圖中,俯視圖是邊長為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( )

A. B. C. D.

【答案】B

【解析】如圖所示,該幾何體的直觀圖為四棱錐,平面平面 ,故選A

(1)由幾何體的直觀圖求三視圖.注意正視圖、側(cè)視圖和俯視圖的觀察方向,注意看到的部分用實線表示,不能看到的部分用虛線表示.

(2)由幾何體的部分視圖畫出剩余的部分視圖.先根據(jù)已知的一部分三視圖,還原、推測直觀圖的可能形式,然后再找其剩下部分三視圖的可能形式.當然作為選擇題,也可將選項逐項代入,再看看給出的部分三視圖是否符合.

(3)由幾何體的三視圖還原幾何體的形狀.要熟悉柱、錐、臺、球的三視圖,明確三視圖的形成原理,結(jié)合空間想象將三視圖還原為實物圖.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù) (其中e為自然對數(shù)的底數(shù)),

(I)求函數(shù)的單調(diào)區(qū)間;

(II)設(shè),.已知直線是曲線的切線,且函數(shù)上是增函數(shù).

(i)求實數(shù)的值;

(ii)求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)a1=2,an+1= ,bn=| |,n∈N* , 則數(shù)列{bn}的通項公式bn=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足:a3=3,a5+a7=12,{an}的前n項和為Sn
(1)求an及Sn;
(2)令bn= (n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A,B,C,滿足sinC=
(1)判斷△ABC的形狀;
(2)設(shè)三邊a,b,c成等差數(shù)列且SABC=6cm2 , 求△ABC三邊的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn , 且a1+a3=10,S4=24.
(1)求數(shù)列{an}的通項公式;
(2)令Tn= ,求證:Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系內(nèi),已知A(3,3)是⊙C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,若⊙C上存在點P,使∠MPN=90°,其中M,N的坐標分別為(﹣m,0)(m,0),則m的最大值為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的圖象在處的切線方程;

(2)若任意,不等式恒成立,求實數(shù)的取值范圍;

(3)設(shè), ,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=kx+b的圖象過點(2,1),且b2﹣6b+9≤0
(1)求函數(shù)f(x)的解析式;
(2)若a>0,解關(guān)于x的不等式x2﹣(a2+a+1)x+a3+3<f(x).

查看答案和解析>>

同步練習冊答案