已知水平放置的ABC的直觀圖ABC′(斜二測(cè)畫法)是邊長(zhǎng)為a的正三角形,則原ABC的面積為(  )

A.a2 B.a2 C.a2 D.a2

 

D

【解析】斜二測(cè)畫法中原圖面積與直觀圖面積之比為1,則易知S ( a)2,Sa2.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題6第2課時(shí)練習(xí)卷(解析版) 題型:填空題

某項(xiàng)游戲活動(dòng)的獎(jiǎng)勵(lì)分成一、二、三等獎(jiǎng)且相應(yīng)獲獎(jiǎng)概率是以a1為首項(xiàng),公比為2的等比數(shù)列,相應(yīng)資金是以700元為首項(xiàng),公差為-140元的等差數(shù)列,則參與該游戲獲得資金的期望為________元.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題5第1課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知點(diǎn)A(1,2)B(3,2),以線段AB為直徑作圓C,則直線lxy30與圓C的位置關(guān)系是( )

A.相交且過(guò)圓心 B.相交但不過(guò)圓心 C.相切 D.相離

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第2課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知m,n為異面直線,m平面αn平面β.直線l滿足lm,lnl?α,l?β,則(  )

Aαβlα

Bαβlβ

Cαβ相交,且交線垂直于l

Dαβ相交,且交線平行于l

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第1課時(shí)練習(xí)卷(解析版) 題型:填空題

如圖,水平放置的三棱柱的側(cè)棱長(zhǎng)和底面邊長(zhǎng)均為2,且側(cè)棱AA1底面A1B1C1,正()視圖是邊長(zhǎng)為2的正方形,則該三棱柱的側(cè)()視圖的面積為________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題3第3課時(shí)練習(xí)卷(解析版) 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn2an1;數(shù)列{bn}滿足bn1bnbnbn1(n≥2,nN*)b11.

(1)求數(shù)列{an}{bn}的通項(xiàng)公式;

(2)求數(shù)列的前n項(xiàng)和Tn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題3第2課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)xa的圖象過(guò)點(diǎn)(4,2),令an,nN*.記數(shù)列{an}的前n項(xiàng)和為Sn,則S2 013( )

A1 B1

C1 D1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題2第4課時(shí)練習(xí)卷(解析版) 題型:解答題

已知x0,x0是函數(shù)f(x)cos2sin2ωx(ω0)的兩個(gè)相鄰的零點(diǎn).

(1)f的值;

(2)若對(duì)?x,都有|f(x)m|≤1,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題2第1課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)yAsin(ωxφ)k(A0,ω0)的最大值為4,最小值為0,最小正周期為,直線x是其圖象的一條對(duì)稱軸,則下面各式中符合條件的解析式為 ( )

Ay4sin By2sin2

Cy2sin2 Dy2sin2

 

查看答案和解析>>

同步練習(xí)冊(cè)答案